DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS

Detalhes bibliográficos
Autor(a) principal: Sousa, Leonardo Chagas de
Data de Publicação: 2011
Outros Autores: Gomide, José Lívio, Milagres, Flaviana Reis, Almeida, Diego Pierre de
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/3817
Resumo: The Kennard-Stone algorithm was used to select Eucalyptus spp. wood samples for development of NIRS (Near-Infrared Spectroscopy) calibration models aiming to minimize number of samples but maintaining the model precisions. A large number of Eucalyptus spp. wood samples (3369 samples) were used to develop NIRS calibration models for the wood basic density, the lignin content and the ethanol-toluene extractives. The models developed with the total number of samples were compared with models developed using only 1000, 500, 200 and 100 samples, which were selected using the Kennard-Stone algorithm. Analysis of the models statistics parameters confirmed the similarity of all models, with exception of the 100 sample models, demonstrating the possibility of substantial savings in time and costs for wood laboratory analysis.  
id UFSM-6_614d5e713fa1b6fe234aa809193e6ef6
oai_identifier_str oai:ojs.pkp.sfu.ca:article/3817
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSISDesenvolvimento de modelos de calibração NIRS para minimização das análises de madeiras de Eucalyptus sppalgorithmpredictionsamplingwood quality.algoritmoprediçãoamostragemqualidade da madeiraThe Kennard-Stone algorithm was used to select Eucalyptus spp. wood samples for development of NIRS (Near-Infrared Spectroscopy) calibration models aiming to minimize number of samples but maintaining the model precisions. A large number of Eucalyptus spp. wood samples (3369 samples) were used to develop NIRS calibration models for the wood basic density, the lignin content and the ethanol-toluene extractives. The models developed with the total number of samples were compared with models developed using only 1000, 500, 200 and 100 samples, which were selected using the Kennard-Stone algorithm. Analysis of the models statistics parameters confirmed the similarity of all models, with exception of the 100 sample models, demonstrating the possibility of substantial savings in time and costs for wood laboratory analysis.  Foi avaliada a técnica de seleção de amostras de madeira de Eucalyptus spp. pelo algoritmo de Kennard- Stone para desenvolvimento de modelos de calibração NIRS (Espectroscopia de Infravermelho próximo), objetivando minimizar o número de amostras, mas mantendo a precisão dos modelos. Foram utilizadas 3.369 amostras de madeiras de Eucalyptus spp. para desenvolvimento de modelos NIRS para densidade básica, teor de lignina e teor de extrativos em álcool-tolueno. Os modelos de calibração desenvolvidos com a totalidade das amostras para predição dos parâmetros de qualidade da madeira foram comparados com modelos desenvolvidos utilizando apenas 1.000, 500, 200 e 100 amostras selecionadas pelo algoritmo de Kennard-Stone. As análises dos parâmetros estatísticos comprovaram a similaridade dos modelos, com exceção dos modelos desenvolvidos com apenas 100 amostras, demonstrando a eficiência desta técnica no desenvolvimento de calibrações NIRS, possibilitando considerável economia de tempo e de custo das análises.Universidade Federal de Santa Maria2011-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/381710.5902/198050983817Ciência Florestal; Vol. 21 No. 3 (2011); 591-599Ciência Florestal; v. 21 n. 3 (2011); 591-5991980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/3817/2226Sousa, Leonardo Chagas deGomide, José LívioMilagres, Flaviana ReisAlmeida, Diego Pierre deinfo:eu-repo/semantics/openAccess2017-05-03T18:02:55Zoai:ojs.pkp.sfu.ca:article/3817Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2017-05-03T18:02:55Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
Desenvolvimento de modelos de calibração NIRS para minimização das análises de madeiras de Eucalyptus spp
title DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
spellingShingle DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
Sousa, Leonardo Chagas de
algorithm
prediction
sampling
wood quality.
algoritmo
predição
amostragem
qualidade da madeira
title_short DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
title_full DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
title_fullStr DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
title_full_unstemmed DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
title_sort DEVELOPMENT OF NIRS CALIBRATION MODELS FOR MINIMIZATION OF Eucalyptus spp WOOD ANALYSIS
author Sousa, Leonardo Chagas de
author_facet Sousa, Leonardo Chagas de
Gomide, José Lívio
Milagres, Flaviana Reis
Almeida, Diego Pierre de
author_role author
author2 Gomide, José Lívio
Milagres, Flaviana Reis
Almeida, Diego Pierre de
author2_role author
author
author
dc.contributor.author.fl_str_mv Sousa, Leonardo Chagas de
Gomide, José Lívio
Milagres, Flaviana Reis
Almeida, Diego Pierre de
dc.subject.por.fl_str_mv algorithm
prediction
sampling
wood quality.
algoritmo
predição
amostragem
qualidade da madeira
topic algorithm
prediction
sampling
wood quality.
algoritmo
predição
amostragem
qualidade da madeira
description The Kennard-Stone algorithm was used to select Eucalyptus spp. wood samples for development of NIRS (Near-Infrared Spectroscopy) calibration models aiming to minimize number of samples but maintaining the model precisions. A large number of Eucalyptus spp. wood samples (3369 samples) were used to develop NIRS calibration models for the wood basic density, the lignin content and the ethanol-toluene extractives. The models developed with the total number of samples were compared with models developed using only 1000, 500, 200 and 100 samples, which were selected using the Kennard-Stone algorithm. Analysis of the models statistics parameters confirmed the similarity of all models, with exception of the 100 sample models, demonstrating the possibility of substantial savings in time and costs for wood laboratory analysis.  
publishDate 2011
dc.date.none.fl_str_mv 2011-09-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/3817
10.5902/198050983817
url https://periodicos.ufsm.br/cienciaflorestal/article/view/3817
identifier_str_mv 10.5902/198050983817
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/3817/2226
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 21 No. 3 (2011); 591-599
Ciência Florestal; v. 21 n. 3 (2011); 591-599
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944127657279488