Characterization and differentiation of forest species by seed image analysis: a new methodological approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência Florestal (Online) |
DOI: | 10.5902/1980509873427 |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/73427 |
Resumo: | Biometric seed analysis can be used to characterize and differentiate forest species. However, forest species are generally studied using manual methods such as measurements with a digital caliper, which provides a limited amount of information on plant morphological characteristics, whereas agronomic species are analyzed using expensive and often inaccessible equipment. Thus, the objective of the present study was to demonstrate that seed image analysis and processing tools can help characterize and differentiate Brazilian forest species. For this purpose, the seeds of 155 forest species belonging to 42 families were photographed and analyzed to extract data on their morphometric descriptors using a new methodological approach. A total of 18 characteristics were assessed, namely eight dimensions, four shape characteristics, and six color characteristics. A set of approximately 1.827 million data was extracted from 101,521 seed images. Digital image processing efficiently characterized the studied seeds and the obtained characteristics allowed us to differentiate between species, including those belonging to the same botanical family and genus. Therefore, seed image analysis using the proposed methodology can be used to characterize, differentiate, and automatedly identify forest species in Brazil. |
id |
UFSM-6_7481cf8d62134a64d5ac80e46dea8a26 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/73427 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
spelling |
Characterization and differentiation of forest species by seed image analysis: a new methodological approachCaracterização e diferenciação de espécies florestais por meio da análise de imagens de sementes: uma nova abordagem metodológicaBiometryForest seedsImage processingSeed analysisBiometriaSementes florestaisProcessamento de imagensAnálise de sementesBiometric seed analysis can be used to characterize and differentiate forest species. However, forest species are generally studied using manual methods such as measurements with a digital caliper, which provides a limited amount of information on plant morphological characteristics, whereas agronomic species are analyzed using expensive and often inaccessible equipment. Thus, the objective of the present study was to demonstrate that seed image analysis and processing tools can help characterize and differentiate Brazilian forest species. For this purpose, the seeds of 155 forest species belonging to 42 families were photographed and analyzed to extract data on their morphometric descriptors using a new methodological approach. A total of 18 characteristics were assessed, namely eight dimensions, four shape characteristics, and six color characteristics. A set of approximately 1.827 million data was extracted from 101,521 seed images. Digital image processing efficiently characterized the studied seeds and the obtained characteristics allowed us to differentiate between species, including those belonging to the same botanical family and genus. Therefore, seed image analysis using the proposed methodology can be used to characterize, differentiate, and automatedly identify forest species in Brazil.A análise biométrica de sementes contribui para a caracterização e diferenciação de espécies florestais. Entretanto, os estudos com espécies nativas geralmente utilizam métodos manuais como o paquímetro digital, o qual extrai uma quantidade limitada de características, enquanto espécies agronômicas dispõem de equipamentos caros e pouco acessíveis. Assim, o objetivo deste trabalho é demonstrar que ferramentas de análise e processamento de imagens de sementes podem auxiliar na caracterização e diferenciação de espécies nativas brasileiras. Para isso, sementes de 155 espécies nativas, distribuídas em 42 famílias botânicas foram fotografadas e analisadas para extração de descritores morfométricos por meio de uma nova abordagem metodológica. Um total de 18 características foram geradas, sendo oito para dimensões, quatro para formato, e seis para cor. Um conjunto de aproximadamente 1,827 milhões de dados foram obtidos a partir 101.521 imagens de sementes. O processamento digital de imagens foi eficiente para a caracterização das sementes nativas, e as características utilizadas permitiram diferenciar as espécies, inclusive àquelas que estão contidas na mesma família botânica e gênero. Portanto, a análise de imagens de sementes pela metodologia proposta contribui para a caracterização, diferenciação e automatização na identificação de espécies florestais nativas do Brasil.Universidade Federal de Santa Maria2023-10-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/7342710.5902/1980509873427Ciência Florestal; Vol. 33 No. 3 (2023): Publicação Contínua; e73427Ciência Florestal; v. 33 n. 3 (2023): Publicação Contínua; e734271980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaflorestal/article/view/73427/61985Copyright (c) 2023 Ciência Florestalhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessFelix, Francival CardosoKratz, DagmaRibeiro, RichardsonNogueira, Antonio Carlos2023-11-10T19:35:25Zoai:ojs.pkp.sfu.ca:article/73427Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2023-11-10T19:35:25Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach Caracterização e diferenciação de espécies florestais por meio da análise de imagens de sementes: uma nova abordagem metodológica |
title |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach |
spellingShingle |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach Characterization and differentiation of forest species by seed image analysis: a new methodological approach Felix, Francival Cardoso Biometry Forest seeds Image processing Seed analysis Biometria Sementes florestais Processamento de imagens Análise de sementes Felix, Francival Cardoso Biometry Forest seeds Image processing Seed analysis Biometria Sementes florestais Processamento de imagens Análise de sementes |
title_short |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach |
title_full |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach |
title_fullStr |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach Characterization and differentiation of forest species by seed image analysis: a new methodological approach |
title_full_unstemmed |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach Characterization and differentiation of forest species by seed image analysis: a new methodological approach |
title_sort |
Characterization and differentiation of forest species by seed image analysis: a new methodological approach |
author |
Felix, Francival Cardoso |
author_facet |
Felix, Francival Cardoso Felix, Francival Cardoso Kratz, Dagma Ribeiro, Richardson Nogueira, Antonio Carlos Kratz, Dagma Ribeiro, Richardson Nogueira, Antonio Carlos |
author_role |
author |
author2 |
Kratz, Dagma Ribeiro, Richardson Nogueira, Antonio Carlos |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Felix, Francival Cardoso Kratz, Dagma Ribeiro, Richardson Nogueira, Antonio Carlos |
dc.subject.por.fl_str_mv |
Biometry Forest seeds Image processing Seed analysis Biometria Sementes florestais Processamento de imagens Análise de sementes |
topic |
Biometry Forest seeds Image processing Seed analysis Biometria Sementes florestais Processamento de imagens Análise de sementes |
description |
Biometric seed analysis can be used to characterize and differentiate forest species. However, forest species are generally studied using manual methods such as measurements with a digital caliper, which provides a limited amount of information on plant morphological characteristics, whereas agronomic species are analyzed using expensive and often inaccessible equipment. Thus, the objective of the present study was to demonstrate that seed image analysis and processing tools can help characterize and differentiate Brazilian forest species. For this purpose, the seeds of 155 forest species belonging to 42 families were photographed and analyzed to extract data on their morphometric descriptors using a new methodological approach. A total of 18 characteristics were assessed, namely eight dimensions, four shape characteristics, and six color characteristics. A set of approximately 1.827 million data was extracted from 101,521 seed images. Digital image processing efficiently characterized the studied seeds and the obtained characteristics allowed us to differentiate between species, including those belonging to the same botanical family and genus. Therefore, seed image analysis using the proposed methodology can be used to characterize, differentiate, and automatedly identify forest species in Brazil. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-18 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/73427 10.5902/1980509873427 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/73427 |
identifier_str_mv |
10.5902/1980509873427 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/73427/61985 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Ciência Florestal http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Ciência Florestal http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 33 No. 3 (2023): Publicação Contínua; e73427 Ciência Florestal; v. 33 n. 3 (2023): Publicação Contínua; e73427 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1822181503672516608 |
dc.identifier.doi.none.fl_str_mv |
10.5902/1980509873427 |