The estimation of selective logging impact in Amazon forest using LIDAR data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ciência Florestal (Online) |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/26007 |
Resumo: | Forest management activities are crucial for the sustainable development of Brazil. Those activities require, however, a strict monitoring that are ofen difcult to operationalize. The mapping of impacted areas by selective logging and the measurement of forest impacts because of logging operations are mostly based on extensive and costly feld surveys. In this study, the Light Detection and Ranging (LiDAR) airborne technology was used to assess the impacts caused by selective logging within 21 units of forest annual production in the Amazon. The study sites are in the states of Rondônia and Pará, within National Forests under federal forestry concession. We used two metrics derived from the point cloud LiDAR for mapping forest impacts: The Canopy Height Model (CHM) and the Relative Density Model (RDM) as forest understory metric. The results of detection of forest impacts derived from the LiDAR dataset showed similar performance of feld-based surveys. We estimated that selective logging activities had impacted an average of 6.8% (± 1.3%, standard deviation) of the forest understory of the Annual Production Units (APU) studied and caused an increase of 4.9% (± 0.9%) in areas of forest canopy opening. The LiDAR technology showed to be effective for assessing and monitoring forest impacts of selective logging in the federal forest concessions in the Amazon. |
id |
UFSM-6_7ad9b6a60b9487d0ae6d05330c2ad47d |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/26007 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
repository_id_str |
|
spelling |
The estimation of selective logging impact in Amazon forest using LIDAR dataEstimativa de impactos da extração seletiva de madeiras na Amazônia utilizando dados LIDARAirborne LiDARSustainable forest managementAmazon forestImpactLiDAR aerotransportadoManejo florestal sustentávelFloresta amazônicaImpactosForest management activities are crucial for the sustainable development of Brazil. Those activities require, however, a strict monitoring that are ofen difcult to operationalize. The mapping of impacted areas by selective logging and the measurement of forest impacts because of logging operations are mostly based on extensive and costly feld surveys. In this study, the Light Detection and Ranging (LiDAR) airborne technology was used to assess the impacts caused by selective logging within 21 units of forest annual production in the Amazon. The study sites are in the states of Rondônia and Pará, within National Forests under federal forestry concession. We used two metrics derived from the point cloud LiDAR for mapping forest impacts: The Canopy Height Model (CHM) and the Relative Density Model (RDM) as forest understory metric. The results of detection of forest impacts derived from the LiDAR dataset showed similar performance of feld-based surveys. We estimated that selective logging activities had impacted an average of 6.8% (± 1.3%, standard deviation) of the forest understory of the Annual Production Units (APU) studied and caused an increase of 4.9% (± 0.9%) in areas of forest canopy opening. The LiDAR technology showed to be effective for assessing and monitoring forest impacts of selective logging in the federal forest concessions in the Amazon.As atividades de manejo florestal são consideradas importantes para o desenvolvimento sustentável para a Amazônia. Tais atividades exigem, entretanto, monitoramento rigoroso que muitas vezes são de difícil operacionalização. O mapeamento das áreas afetadas pela exploração seletiva de madeira e a mensuração dos danos florestais decorrentes da exploração florestal ainda são dependentes de extensos e onerosos levantamentos de campo. Neste estudo foi utilizada a tecnologia Light Detection And Ranging (LiDAR) aerotransportada para realização dos impactos causados pela extração seletiva de madeiras em 21 Unidades de Produção Anual na Amazônia. As áreas de estudo estão localizadas nos estados de Rondônia e do Pará, em Florestas Nacionais sob regime de concessão florestal federal. Foram utilizadas duas métricas derivadas da nuvem de pontos LiDAR para o mapeamento dos impactos nas florestas: a Canopy Height Model (CHM) como métrica do dossel e a Relative Density Model (RDM) como métrica do sub-bosque. Os resultados da detecção dos impactos florestais obtidos com o mapeamento com dados do LiDAR são compatíveis com o mapeamento realizado em campo. Observou-se que as práticas de extração florestal de impacto reduzido causaram danos no sub-bosque na ordem de 6,8% ±1,3 % da área total das UPA (Unidade de Produção Anual) avaliadas e 4,9 ±0,9 % de abertura de clareiras. A tecnologia LiDAR demonstrou ser efetiva para o monitoramento dos impactos da extração seletiva de madeiras em áreas sob concessão florestal federal na Amazônia.Universidade Federal de Santa Maria2019-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2600710.5902/1980509826007Ciência Florestal; Vol. 29 No. 2 (2019); 481-495Ciência Florestal; v. 29 n. 2 (2019); 481-4951980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/26007/pdfCopyright (c) 2019 Ciência Florestalinfo:eu-repo/semantics/openAccessLocks, Charton JahnMatricardi, Eraldo Aparecido Trondoli2019-09-05T19:45:50Zoai:ojs.pkp.sfu.ca:article/26007Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2019-09-05T19:45:50Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
The estimation of selective logging impact in Amazon forest using LIDAR data Estimativa de impactos da extração seletiva de madeiras na Amazônia utilizando dados LIDAR |
title |
The estimation of selective logging impact in Amazon forest using LIDAR data |
spellingShingle |
The estimation of selective logging impact in Amazon forest using LIDAR data Locks, Charton Jahn Airborne LiDAR Sustainable forest management Amazon forest Impact LiDAR aerotransportado Manejo florestal sustentável Floresta amazônica Impactos |
title_short |
The estimation of selective logging impact in Amazon forest using LIDAR data |
title_full |
The estimation of selective logging impact in Amazon forest using LIDAR data |
title_fullStr |
The estimation of selective logging impact in Amazon forest using LIDAR data |
title_full_unstemmed |
The estimation of selective logging impact in Amazon forest using LIDAR data |
title_sort |
The estimation of selective logging impact in Amazon forest using LIDAR data |
author |
Locks, Charton Jahn |
author_facet |
Locks, Charton Jahn Matricardi, Eraldo Aparecido Trondoli |
author_role |
author |
author2 |
Matricardi, Eraldo Aparecido Trondoli |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Locks, Charton Jahn Matricardi, Eraldo Aparecido Trondoli |
dc.subject.por.fl_str_mv |
Airborne LiDAR Sustainable forest management Amazon forest Impact LiDAR aerotransportado Manejo florestal sustentável Floresta amazônica Impactos |
topic |
Airborne LiDAR Sustainable forest management Amazon forest Impact LiDAR aerotransportado Manejo florestal sustentável Floresta amazônica Impactos |
description |
Forest management activities are crucial for the sustainable development of Brazil. Those activities require, however, a strict monitoring that are ofen difcult to operationalize. The mapping of impacted areas by selective logging and the measurement of forest impacts because of logging operations are mostly based on extensive and costly feld surveys. In this study, the Light Detection and Ranging (LiDAR) airborne technology was used to assess the impacts caused by selective logging within 21 units of forest annual production in the Amazon. The study sites are in the states of Rondônia and Pará, within National Forests under federal forestry concession. We used two metrics derived from the point cloud LiDAR for mapping forest impacts: The Canopy Height Model (CHM) and the Relative Density Model (RDM) as forest understory metric. The results of detection of forest impacts derived from the LiDAR dataset showed similar performance of feld-based surveys. We estimated that selective logging activities had impacted an average of 6.8% (± 1.3%, standard deviation) of the forest understory of the Annual Production Units (APU) studied and caused an increase of 4.9% (± 0.9%) in areas of forest canopy opening. The LiDAR technology showed to be effective for assessing and monitoring forest impacts of selective logging in the federal forest concessions in the Amazon. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/26007 10.5902/1980509826007 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/26007 |
identifier_str_mv |
10.5902/1980509826007 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/26007/pdf |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Ciência Florestal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Ciência Florestal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 29 No. 2 (2019); 481-495 Ciência Florestal; v. 29 n. 2 (2019); 481-495 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1799944131791814656 |