The estimation of selective logging impact in Amazon forest using LIDAR data

Detalhes bibliográficos
Autor(a) principal: Locks, Charton Jahn
Data de Publicação: 2019
Outros Autores: Matricardi, Eraldo Aparecido Trondoli
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/26007
Resumo: Forest management activities are crucial for the sustainable development of Brazil. Those activities require, however, a strict monitoring that are ofen difcult to operationalize. The mapping of impacted areas by selective logging and the measurement of forest impacts because of logging operations are mostly based on extensive and costly feld surveys. In this study, the Light Detection and Ranging (LiDAR) airborne technology was used to assess the impacts caused by selective logging within 21 units of forest annual production in the Amazon. The study sites are in the states of Rondônia and Pará, within National Forests under federal forestry concession. We used two metrics derived from the point cloud LiDAR for mapping forest impacts: The Canopy Height Model (CHM) and the Relative Density Model (RDM) as forest understory metric. The results of detection of forest impacts derived from the LiDAR dataset showed similar performance of feld-based surveys. We estimated that selective logging activities had impacted an average of 6.8% (± 1.3%, standard deviation) of the forest understory of the Annual Production Units (APU) studied and caused an increase of 4.9% (± 0.9%) in areas of forest canopy opening. The LiDAR technology showed to be effective for assessing and monitoring forest impacts of selective logging in the federal forest concessions in the Amazon.
id UFSM-6_7ad9b6a60b9487d0ae6d05330c2ad47d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/26007
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling The estimation of selective logging impact in Amazon forest using LIDAR dataEstimativa de impactos da extração seletiva de madeiras na Amazônia utilizando dados LIDARAirborne LiDARSustainable forest managementAmazon forestImpactLiDAR aerotransportadoManejo florestal sustentávelFloresta amazônicaImpactosForest management activities are crucial for the sustainable development of Brazil. Those activities require, however, a strict monitoring that are ofen difcult to operationalize. The mapping of impacted areas by selective logging and the measurement of forest impacts because of logging operations are mostly based on extensive and costly feld surveys. In this study, the Light Detection and Ranging (LiDAR) airborne technology was used to assess the impacts caused by selective logging within 21 units of forest annual production in the Amazon. The study sites are in the states of Rondônia and Pará, within National Forests under federal forestry concession. We used two metrics derived from the point cloud LiDAR for mapping forest impacts: The Canopy Height Model (CHM) and the Relative Density Model (RDM) as forest understory metric. The results of detection of forest impacts derived from the LiDAR dataset showed similar performance of feld-based surveys. We estimated that selective logging activities had impacted an average of 6.8% (± 1.3%, standard deviation) of the forest understory of the Annual Production Units (APU) studied and caused an increase of 4.9% (± 0.9%) in areas of forest canopy opening. The LiDAR technology showed to be effective for assessing and monitoring forest impacts of selective logging in the federal forest concessions in the Amazon.As atividades de manejo florestal são consideradas importantes para o desenvolvimento sustentável para a Amazônia. Tais atividades exigem, entretanto, monitoramento rigoroso que muitas vezes são de difícil operacionalização. O mapeamento das áreas afetadas pela exploração seletiva de madeira e a mensuração dos danos florestais decorrentes da exploração florestal ainda são dependentes de extensos e onerosos levantamentos de campo. Neste estudo foi utilizada a tecnologia Light Detection And Ranging (LiDAR) aerotransportada para realização dos impactos causados pela extração seletiva de madeiras em 21 Unidades de Produção Anual na Amazônia. As áreas de estudo estão localizadas nos estados de Rondônia e do Pará, em Florestas Nacionais sob regime de concessão florestal federal. Foram utilizadas duas métricas derivadas da nuvem de pontos LiDAR para o mapeamento dos impactos nas florestas: a Canopy Height Model (CHM) como métrica do dossel e a Relative Density Model (RDM) como métrica do sub-bosque. Os resultados da detecção dos impactos florestais obtidos com o mapeamento com dados do LiDAR são compatíveis com o mapeamento realizado em campo. Observou-se que as práticas de extração florestal de impacto reduzido causaram danos no sub-bosque na ordem de 6,8% ±1,3 % da área total das UPA (Unidade de Produção Anual) avaliadas e 4,9 ±0,9 % de abertura de clareiras. A tecnologia LiDAR demonstrou ser efetiva para o monitoramento dos impactos da extração seletiva de madeiras em áreas sob concessão florestal federal na Amazônia.Universidade Federal de Santa Maria2019-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2600710.5902/1980509826007Ciência Florestal; Vol. 29 No. 2 (2019); 481-495Ciência Florestal; v. 29 n. 2 (2019); 481-4951980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/26007/pdfCopyright (c) 2019 Ciência Florestalinfo:eu-repo/semantics/openAccessLocks, Charton JahnMatricardi, Eraldo Aparecido Trondoli2019-09-05T19:45:50Zoai:ojs.pkp.sfu.ca:article/26007Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2019-09-05T19:45:50Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv The estimation of selective logging impact in Amazon forest using LIDAR data
Estimativa de impactos da extração seletiva de madeiras na Amazônia utilizando dados LIDAR
title The estimation of selective logging impact in Amazon forest using LIDAR data
spellingShingle The estimation of selective logging impact in Amazon forest using LIDAR data
Locks, Charton Jahn
Airborne LiDAR
Sustainable forest management
Amazon forest
Impact
LiDAR aerotransportado
Manejo florestal sustentável
Floresta amazônica
Impactos
title_short The estimation of selective logging impact in Amazon forest using LIDAR data
title_full The estimation of selective logging impact in Amazon forest using LIDAR data
title_fullStr The estimation of selective logging impact in Amazon forest using LIDAR data
title_full_unstemmed The estimation of selective logging impact in Amazon forest using LIDAR data
title_sort The estimation of selective logging impact in Amazon forest using LIDAR data
author Locks, Charton Jahn
author_facet Locks, Charton Jahn
Matricardi, Eraldo Aparecido Trondoli
author_role author
author2 Matricardi, Eraldo Aparecido Trondoli
author2_role author
dc.contributor.author.fl_str_mv Locks, Charton Jahn
Matricardi, Eraldo Aparecido Trondoli
dc.subject.por.fl_str_mv Airborne LiDAR
Sustainable forest management
Amazon forest
Impact
LiDAR aerotransportado
Manejo florestal sustentável
Floresta amazônica
Impactos
topic Airborne LiDAR
Sustainable forest management
Amazon forest
Impact
LiDAR aerotransportado
Manejo florestal sustentável
Floresta amazônica
Impactos
description Forest management activities are crucial for the sustainable development of Brazil. Those activities require, however, a strict monitoring that are ofen difcult to operationalize. The mapping of impacted areas by selective logging and the measurement of forest impacts because of logging operations are mostly based on extensive and costly feld surveys. In this study, the Light Detection and Ranging (LiDAR) airborne technology was used to assess the impacts caused by selective logging within 21 units of forest annual production in the Amazon. The study sites are in the states of Rondônia and Pará, within National Forests under federal forestry concession. We used two metrics derived from the point cloud LiDAR for mapping forest impacts: The Canopy Height Model (CHM) and the Relative Density Model (RDM) as forest understory metric. The results of detection of forest impacts derived from the LiDAR dataset showed similar performance of feld-based surveys. We estimated that selective logging activities had impacted an average of 6.8% (± 1.3%, standard deviation) of the forest understory of the Annual Production Units (APU) studied and caused an increase of 4.9% (± 0.9%) in areas of forest canopy opening. The LiDAR technology showed to be effective for assessing and monitoring forest impacts of selective logging in the federal forest concessions in the Amazon.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/26007
10.5902/1980509826007
url https://periodicos.ufsm.br/cienciaflorestal/article/view/26007
identifier_str_mv 10.5902/1980509826007
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/26007/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2019 Ciência Florestal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Ciência Florestal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 29 No. 2 (2019); 481-495
Ciência Florestal; v. 29 n. 2 (2019); 481-495
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944131791814656