SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE

Detalhes bibliográficos
Autor(a) principal: Schneid, Guinter Neutzling
Data de Publicação: 2016
Outros Autores: de Oliveira, Rubens Chaves, Vieira, Osvaldo
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/25149
Resumo: The dimensional stability of the paper may change due to middle exchange moisture, releasing the latent stress acquired into the manufacturing process. One result of this tension release is the diagonal curl. This study aims to conduct a sensitivity analysis of the different input’s variables of an industrial paper machine, along with some laboratory measurements, in order to identify the importance in production of paperboard quality control and relate to the property of the paper called twist. A survey was made of the production history, relating to 2012, to observe the products with the highest quality losses. From this, they were correlated with the critical points of measurement profile in the machine cross direction and consequently with the paper. It was found some changes once the variables correlated with twist, referring to the three analyzes of the profile (tender side, middle and drive side). It was revealed, from the sensitivity analysis, that the most important and sensitive variables, respectively for the tender side, middle and drive side, were total flow from the top layer, vapor pressure in the 6th group of drying cylinders and mass flow side of the bottom layer of the formation of paperboard.
id UFSM-6_b7c06c5a4c18c6767f0e604d03f1ffa5
oai_identifier_str oai:ojs.pkp.sfu.ca:article/25149
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINEANÁLISE DE SENSIBILIDADE, POR MEIO DE REDE NEURAL ARTIFICIAL, DAS VARIÁVEIS QUE INFLUENCIAM O ENCANOAMENTO DIAGONAL EM UMA MÁQUINA DE PAPEL-CARTÃOtwistsensitivity analysisdimensional stabilitypaperboardencanoamento diagonalanálise de sensibilidadeestabilidade dimensionalpapel-cartãoThe dimensional stability of the paper may change due to middle exchange moisture, releasing the latent stress acquired into the manufacturing process. One result of this tension release is the diagonal curl. This study aims to conduct a sensitivity analysis of the different input’s variables of an industrial paper machine, along with some laboratory measurements, in order to identify the importance in production of paperboard quality control and relate to the property of the paper called twist. A survey was made of the production history, relating to 2012, to observe the products with the highest quality losses. From this, they were correlated with the critical points of measurement profile in the machine cross direction and consequently with the paper. It was found some changes once the variables correlated with twist, referring to the three analyzes of the profile (tender side, middle and drive side). It was revealed, from the sensitivity analysis, that the most important and sensitive variables, respectively for the tender side, middle and drive side, were total flow from the top layer, vapor pressure in the 6th group of drying cylinders and mass flow side of the bottom layer of the formation of paperboard.A estabilidade dimensional do papel pode sofrer alterações devido à troca de umidade com o meio, liberando o estresse latente adquirido no processo de fabricação. Um dos resultados dessa liberação de tensões é o encanoamento diagonal. Este estudo tem por objetivo fazer uma análise de sensibilidade das diferentes variáveis de entrada de uma máquina industrial de papel, juntamente com algumas medições laboratoriais, com a propriedade do papel denominada de encanoamento diagonal. Foi feito um levantamento do histórico referente a 2012 para observar os produtos com as maiores perdas. A partir disso, correlacionados com os pontos críticos do perfil de medição na direção CD. Algumas alterações na ordem em que as variáveis correlacionavam com o twist, referentes nas três análises do perfil (lado comando, meio e acionamento). Foi revelado, a partir da análise de sensibilidade, que as variáveis mais importantes e sensíveis, respectivamente, para o lado comando, meio e acionamento da máquina, foram o fluxo total da caixa de entrada da camada cobertura, pressão de vapor no 6º grupo e fluxo de massa lateral da camada base (Module Edge).Universidade Federal de Santa Maria2016-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2514910.5902/1980509825149Ciência Florestal; Vol. 26 No. 4 (2016); 1291-1299Ciência Florestal; v. 26 n. 4 (2016); 1291-12991980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/25149/pdfCopyright (c) 2016 Ciência Florestalinfo:eu-repo/semantics/openAccessSchneid, Guinter Neutzlingde Oliveira, Rubens ChavesVieira, Osvaldo2017-04-05T18:38:58Zoai:ojs.pkp.sfu.ca:article/25149Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2017-04-05T18:38:58Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
ANÁLISE DE SENSIBILIDADE, POR MEIO DE REDE NEURAL ARTIFICIAL, DAS VARIÁVEIS QUE INFLUENCIAM O ENCANOAMENTO DIAGONAL EM UMA MÁQUINA DE PAPEL-CARTÃO
title SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
spellingShingle SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
Schneid, Guinter Neutzling
twist
sensitivity analysis
dimensional stability
paperboard
encanoamento diagonal
análise de sensibilidade
estabilidade dimensional
papel-cartão
title_short SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
title_full SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
title_fullStr SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
title_full_unstemmed SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
title_sort SENSITIVITY ANALYSIS BY ARTIFICIAL NEURAL NETWORK (ANN) OF VARIABLES THAT INFLUENCE THE DIAGONAL TWIST IN A PAPERBOARD INDUSTRIAL MACHINE
author Schneid, Guinter Neutzling
author_facet Schneid, Guinter Neutzling
de Oliveira, Rubens Chaves
Vieira, Osvaldo
author_role author
author2 de Oliveira, Rubens Chaves
Vieira, Osvaldo
author2_role author
author
dc.contributor.author.fl_str_mv Schneid, Guinter Neutzling
de Oliveira, Rubens Chaves
Vieira, Osvaldo
dc.subject.por.fl_str_mv twist
sensitivity analysis
dimensional stability
paperboard
encanoamento diagonal
análise de sensibilidade
estabilidade dimensional
papel-cartão
topic twist
sensitivity analysis
dimensional stability
paperboard
encanoamento diagonal
análise de sensibilidade
estabilidade dimensional
papel-cartão
description The dimensional stability of the paper may change due to middle exchange moisture, releasing the latent stress acquired into the manufacturing process. One result of this tension release is the diagonal curl. This study aims to conduct a sensitivity analysis of the different input’s variables of an industrial paper machine, along with some laboratory measurements, in order to identify the importance in production of paperboard quality control and relate to the property of the paper called twist. A survey was made of the production history, relating to 2012, to observe the products with the highest quality losses. From this, they were correlated with the critical points of measurement profile in the machine cross direction and consequently with the paper. It was found some changes once the variables correlated with twist, referring to the three analyzes of the profile (tender side, middle and drive side). It was revealed, from the sensitivity analysis, that the most important and sensitive variables, respectively for the tender side, middle and drive side, were total flow from the top layer, vapor pressure in the 6th group of drying cylinders and mass flow side of the bottom layer of the formation of paperboard.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/25149
10.5902/1980509825149
url https://periodicos.ufsm.br/cienciaflorestal/article/view/25149
identifier_str_mv 10.5902/1980509825149
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/25149/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2016 Ciência Florestal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Ciência Florestal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 26 No. 4 (2016); 1291-1299
Ciência Florestal; v. 26 n. 4 (2016); 1291-1299
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944131312615424