APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME

Detalhes bibliográficos
Autor(a) principal: Kilca, Ricardo V.
Data de Publicação: 2015
Outros Autores: Longhi, Solon Jonas, Schwartz, Gustavo, Souza, Adriano M., Wojciechowski, Julio C.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/20587
Resumo: http://dx.doi.org/10.5902/1980509820587Fisher Discriminant Analysis (DA) seeks a linear combination of independent variables maximizing separation of predicted groups and also permits new observations for being classified in groups know a priori. We applied DA with eight structural attributes of vegetation obtained of systematic tree inventory surveys realized in five physiognomies types in the Brazilian Pampa biome. Later, 10 new samples were randomly selected from the same vegetation types to perform model validation. The DA generated four discriminant functions (DFs), where the first two had 88.4% power for discriminating groups (DF1 = 74.4% and DF2 = 14%). From the structural attributes used in the model, species richness, commercial height, and total height were related to DF1. Basal area and maximum stem diameter were related to DF2. The others DFs and structural variables have had less power of discriminating the groups. The DA classified 100% of the cases in their respective groups, showing a high efficiency of the chosen discriminating variables. The new forest samples inserted in the model were also classified with a small degree of error. The use of DA models should be enhanced because it is simple and more effective to express a forest classification model than the other descriptive multivariate methods. 
id UFSM-6_cbe4a4360104d5f34e69c6890b3271ac
oai_identifier_str oai:ojs.pkp.sfu.ca:article/20587
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOMEEMPREGO DA ANÁLISE DISCRIMINANTE DE FISHER PARA CLASSIFICAR FISIONOMIAS FLORESTAIS NO BIOMA PAMPAforest physiognomyforest structuremultivariate statisticRio Grande do SulContinuous Forest Inventory.fisionomia florestalestrutura arbóreaestatística multivariadaInventário Florestal Contínuo do Rio Grande do Sul.http://dx.doi.org/10.5902/1980509820587Fisher Discriminant Analysis (DA) seeks a linear combination of independent variables maximizing separation of predicted groups and also permits new observations for being classified in groups know a priori. We applied DA with eight structural attributes of vegetation obtained of systematic tree inventory surveys realized in five physiognomies types in the Brazilian Pampa biome. Later, 10 new samples were randomly selected from the same vegetation types to perform model validation. The DA generated four discriminant functions (DFs), where the first two had 88.4% power for discriminating groups (DF1 = 74.4% and DF2 = 14%). From the structural attributes used in the model, species richness, commercial height, and total height were related to DF1. Basal area and maximum stem diameter were related to DF2. The others DFs and structural variables have had less power of discriminating the groups. The DA classified 100% of the cases in their respective groups, showing a high efficiency of the chosen discriminating variables. The new forest samples inserted in the model were also classified with a small degree of error. The use of DA models should be enhanced because it is simple and more effective to express a forest classification model than the other descriptive multivariate methods. http://dx.doi.org/10.5902/1980509820587A análise discriminante de Fisher (ADF) busca realizar uma combinação linear das variáveis independentes com objetivo de maximizar a separação de grupos preditos em um espaço reduzido bidimensional e ainda permitir que novas observações sejam classificadas ou não dentro dos grupos conhecidos a priori. Empregou-se a ADF utilizando oito variáveis estruturais obtidas de inventários sistemáticos do componente arbóreo (DAP>10 cm) realizados em cinco tipos florestais (total de 5 ha) distintos no bioma Pampa do sul do Brasil. Posteriormente foram sorteadas 10 novas amostras provenientes das mesmas fitofisionomias para realizar a validação do modelo. A AD gerou quatro funções discriminantes (FDs), sendo que as duas primeiras funções desempenharam uma capacidade de 88,4% de habilidade para discriminação dos grupos: FD1 = 74,4% (autovalor FD1 = 33,99) e FD2 = 14% (autovalor FD2 = 6,34). Os atributos estruturais que estiveram mais relacionados com a FD1 foram riqueza de espécies, altura comercial e altura total. Em FD2 prevaleceu a área basal e o diâmetro máximo atingido pelo caule. As outras FDs e variáveis estruturais apresentaram menor capacidade de discriminação dos grupos. A AD classificou 100% dos casos nos respectivos grupos preditos, revelando a alta eficiência das variáveis discriminadoras escolhidas. As novas amostras também foram classificadas em seus respectivos grupos, porém, com pequeno grau de erro. O uso da AD para a classificação das florestas deveria ser incentivado porque o método é simples e os resultados são estatisticamente mais confiáveis do que outros métodos descritivos da estatística multivariada que são amplamente utilizados.Universidade Federal de Santa Maria2015-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2058710.5902/1980509820587Ciência Florestal; Vol. 25 No. 4 (2015); 885-895Ciência Florestal; v. 25 n. 4 (2015); 885-8951980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/20587/pdfKilca, Ricardo V.Longhi, Solon JonasSchwartz, GustavoSouza, Adriano M.Wojciechowski, Julio C.info:eu-repo/semantics/openAccess2017-04-10T12:18:36Zoai:ojs.pkp.sfu.ca:article/20587Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2017-04-10T12:18:36Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
EMPREGO DA ANÁLISE DISCRIMINANTE DE FISHER PARA CLASSIFICAR FISIONOMIAS FLORESTAIS NO BIOMA PAMPA
title APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
spellingShingle APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
Kilca, Ricardo V.
forest physiognomy
forest structure
multivariate statistic
Rio Grande do Sul
Continuous Forest Inventory.
fisionomia florestal
estrutura arbórea
estatística multivariada
Inventário Florestal Contínuo do Rio Grande do Sul.
title_short APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
title_full APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
title_fullStr APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
title_full_unstemmed APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
title_sort APPLICATION OF FISHER’S DISCRIMINANT ANALYSIS TO CLASSIFY FOREST COMMUNITIES IN THE PAMPA BIOME
author Kilca, Ricardo V.
author_facet Kilca, Ricardo V.
Longhi, Solon Jonas
Schwartz, Gustavo
Souza, Adriano M.
Wojciechowski, Julio C.
author_role author
author2 Longhi, Solon Jonas
Schwartz, Gustavo
Souza, Adriano M.
Wojciechowski, Julio C.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Kilca, Ricardo V.
Longhi, Solon Jonas
Schwartz, Gustavo
Souza, Adriano M.
Wojciechowski, Julio C.
dc.subject.por.fl_str_mv forest physiognomy
forest structure
multivariate statistic
Rio Grande do Sul
Continuous Forest Inventory.
fisionomia florestal
estrutura arbórea
estatística multivariada
Inventário Florestal Contínuo do Rio Grande do Sul.
topic forest physiognomy
forest structure
multivariate statistic
Rio Grande do Sul
Continuous Forest Inventory.
fisionomia florestal
estrutura arbórea
estatística multivariada
Inventário Florestal Contínuo do Rio Grande do Sul.
description http://dx.doi.org/10.5902/1980509820587Fisher Discriminant Analysis (DA) seeks a linear combination of independent variables maximizing separation of predicted groups and also permits new observations for being classified in groups know a priori. We applied DA with eight structural attributes of vegetation obtained of systematic tree inventory surveys realized in five physiognomies types in the Brazilian Pampa biome. Later, 10 new samples were randomly selected from the same vegetation types to perform model validation. The DA generated four discriminant functions (DFs), where the first two had 88.4% power for discriminating groups (DF1 = 74.4% and DF2 = 14%). From the structural attributes used in the model, species richness, commercial height, and total height were related to DF1. Basal area and maximum stem diameter were related to DF2. The others DFs and structural variables have had less power of discriminating the groups. The DA classified 100% of the cases in their respective groups, showing a high efficiency of the chosen discriminating variables. The new forest samples inserted in the model were also classified with a small degree of error. The use of DA models should be enhanced because it is simple and more effective to express a forest classification model than the other descriptive multivariate methods. 
publishDate 2015
dc.date.none.fl_str_mv 2015-12-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/20587
10.5902/1980509820587
url https://periodicos.ufsm.br/cienciaflorestal/article/view/20587
identifier_str_mv 10.5902/1980509820587
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/20587/pdf
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 25 No. 4 (2015); 885-895
Ciência Florestal; v. 25 n. 4 (2015); 885-895
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944130458025984