BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME

Detalhes bibliográficos
Autor(a) principal: Wojciechowski, Julio Cesar
Data de Publicação: 2017
Outros Autores: Arce, Julio Eduardo, Weber, Saulo Henrique, Ribeiro Junior, Paulo Justiniano, Pires, Carlos Alberto da Fonseca
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/27739
Resumo: This study aimed to use the share parameters of the geo-statistical models applied to maximum likelihood estimators to predict the volumes per hectare in three fragments of a Deciduous Forest located in Santa Teresa, RS state, employing the ‘Borrow Strength’ approach. Data were collected in 56 sampling units (S.U) of variable sizes with approximately 250 m2 for a total of nine ha, distributed in a systematic grid of 40 x 40 m. Dendrometric variables from individuals with DBH ≥ 10 cm near the center of the S.U. were measured. Two approaches to the data set were prepared, the first of which considering both areas entirely independent themselves, subdivided into two types: a fit to non-spatial model (NSM) and a fit to the maximum likelihood (ML) not shared (individual adjustment) model. The second approach described the adjustment of the shared as a function of random error or nugget, comprising models: a shared model without fixed nugget (variability between S.U) and a shared model with fixed nugget (variability within S.U) models, using a logarithmic function of M.L applied to the Matèrn family of exponential correlation model. Then, the models were compared using Akaike information criterion (AIC) and by degree of spatial dependence for subsequent preparation of both kriging and prediction surfaces of the selected models. It was observed that the combined volume models to estimate values were higher for the AIC values and spatial dependence with respect to the adjustments for the individual areas. Among the shared models, it was observed that there was a gain in the parameter estimates using the fixed nugget, which resulted in a higher correlation of samples and spatial dependence (AP = 88 m), than the shared models without the fixed nugget (AP = 75 and 66 m). The AIC was efficient because it compared the different levels of proposed adjustments to the methodology of the study, selecting a model with parsimony and compatible with the spatial distribution patterns found in the areas. The use of combined models for data sampling in different areas with the introduction of the error estimate intra-plot (fixed nugget) in the equations of MV can be suggested to increase the correlation between the S.U and combined evaluation of the AIC plus the degree of spatial dependence in estimating dendrometric variables.
id UFSM-6_d9f1bf770c079df170aa80582d059fe0
oai_identifier_str oai:ojs.pkp.sfu.ca:article/27739
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUMEABORDAGEM BORROW STRENGHT APLICADA A MODELO GEOESTATÍSTICO PARA ESTIMATIVA DE VOLUMEmaximum likelihoodprecision silvicultureAkaike criterionforest inventory.máxima verossimilhançasilvicultura de precisãocritério de Akaikeinventário florestal.This study aimed to use the share parameters of the geo-statistical models applied to maximum likelihood estimators to predict the volumes per hectare in three fragments of a Deciduous Forest located in Santa Teresa, RS state, employing the ‘Borrow Strength’ approach. Data were collected in 56 sampling units (S.U) of variable sizes with approximately 250 m2 for a total of nine ha, distributed in a systematic grid of 40 x 40 m. Dendrometric variables from individuals with DBH ≥ 10 cm near the center of the S.U. were measured. Two approaches to the data set were prepared, the first of which considering both areas entirely independent themselves, subdivided into two types: a fit to non-spatial model (NSM) and a fit to the maximum likelihood (ML) not shared (individual adjustment) model. The second approach described the adjustment of the shared as a function of random error or nugget, comprising models: a shared model without fixed nugget (variability between S.U) and a shared model with fixed nugget (variability within S.U) models, using a logarithmic function of M.L applied to the Matèrn family of exponential correlation model. Then, the models were compared using Akaike information criterion (AIC) and by degree of spatial dependence for subsequent preparation of both kriging and prediction surfaces of the selected models. It was observed that the combined volume models to estimate values were higher for the AIC values and spatial dependence with respect to the adjustments for the individual areas. Among the shared models, it was observed that there was a gain in the parameter estimates using the fixed nugget, which resulted in a higher correlation of samples and spatial dependence (AP = 88 m), than the shared models without the fixed nugget (AP = 75 and 66 m). The AIC was efficient because it compared the different levels of proposed adjustments to the methodology of the study, selecting a model with parsimony and compatible with the spatial distribution patterns found in the areas. The use of combined models for data sampling in different areas with the introduction of the error estimate intra-plot (fixed nugget) in the equations of MV can be suggested to increase the correlation between the S.U and combined evaluation of the AIC plus the degree of spatial dependence in estimating dendrometric variables.O presente estudo teve como objetivo utilizar o compartilhamento de parâmetros de modelos geoestatísticos aplicado aos estimadores de máxima verossimilhança para predizer os volumes por hectare em três fragmentos de Floresta Estacional Subtropical localizados em Santa Teresa - RS empregando a abordagem Borrow strenght. Os dados foram coletados em 56 unidades amostrais (U.A) de tamanho variável com aproximadamente 250 m2 em um total de 9 ha, distribuídas em um grid sistemático de 40 x 40 m, sendo medidas as variáveis dendrométricas dos indivíduos com DAP ≥ 10 cm próximas ao centro das unidades. Foram elaboradas duas abordagens para o conjunto de dados, sendo que a primeira considerou as áreas totalmente independentes entre si, subdivididas em dois tipos: ajuste ao modelo não espacial (NSM) e ajuste pelo método de máxima verossimilhança (MV) não compartilhado (ajuste individual). A segunda abordagem descreveu os ajustes dos modelos de máxima verossimilhança compartilhados em função do erro aleatório ou nugget, sendo: modelos sem nugget fixo (variabilidade entre as U.A) e com nugget fixo (variabilidade dentro das U.A), utilizando como correlação a função exponencial da família Matèrn. Em seguida, os modelos foram comparados pelo critério de informação de Akaike (AIC) e grau de dependência espacial para posterior krigagem e elaboração das superfícies de predição dos modelos selecionados. Foi observado que os modelos combinados para estimativa do volume foram superiores para os valores de AIC e grau de dependência espacial em relação aos ajustes para as áreas individuais. Entre os modelos compartilhados, observou-se que houve um ganho nas estimativas dos parâmetros utilizando o nugget fixo, que resultaram em uma correlação das amostras e grau de dependência espacial maior (AP = 88 m), em relação aos modelos compartilhado sem nugget fixo (AP = 75 e 66 m). O AIC mostrou-se eficiente, uma vez que comparou os diferentes níveis de ajustes propostos na metodologia do trabalho, selecionando um modelo com parcimônia e compatível com os padrões de distribuição espacial encontrados nas áreas. Sugere-se o uso de modelos compartilhados para dados de amostragem em diferentes áreas, com introdução da estimativa do erro intraparcela (nugget fixo) nas equações de MV, para aumentar a correlação entre as U.A, com avaliação conjunta do AIC somado ao grau de dependência espacial na estimativa de variáveis dendrométricas.Universidade Federal de Santa Maria2017-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2773910.5902/1980509827739Ciência Florestal; Vol. 27 No. 2 (2017); 597-607Ciência Florestal; v. 27 n. 2 (2017); 597-6071980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/27739/15746Copyright (c) 2017 Ciência Florestalinfo:eu-repo/semantics/openAccessWojciechowski, Julio CesarArce, Julio EduardoWeber, Saulo HenriqueRibeiro Junior, Paulo JustinianoPires, Carlos Alberto da Fonseca2017-07-08T02:12:01Zoai:ojs.pkp.sfu.ca:article/27739Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2017-07-08T02:12:01Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
ABORDAGEM BORROW STRENGHT APLICADA A MODELO GEOESTATÍSTICO PARA ESTIMATIVA DE VOLUME
title BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
spellingShingle BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
Wojciechowski, Julio Cesar
maximum likelihood
precision silviculture
Akaike criterion
forest inventory.
máxima verossimilhança
silvicultura de precisão
critério de Akaike
inventário florestal.
title_short BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
title_full BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
title_fullStr BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
title_full_unstemmed BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
title_sort BORROW STRENGTH APPROACH APPLIED TO A GEOSTATISTICAL MODEL TO ESTIMATE VOLUME
author Wojciechowski, Julio Cesar
author_facet Wojciechowski, Julio Cesar
Arce, Julio Eduardo
Weber, Saulo Henrique
Ribeiro Junior, Paulo Justiniano
Pires, Carlos Alberto da Fonseca
author_role author
author2 Arce, Julio Eduardo
Weber, Saulo Henrique
Ribeiro Junior, Paulo Justiniano
Pires, Carlos Alberto da Fonseca
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Wojciechowski, Julio Cesar
Arce, Julio Eduardo
Weber, Saulo Henrique
Ribeiro Junior, Paulo Justiniano
Pires, Carlos Alberto da Fonseca
dc.subject.por.fl_str_mv maximum likelihood
precision silviculture
Akaike criterion
forest inventory.
máxima verossimilhança
silvicultura de precisão
critério de Akaike
inventário florestal.
topic maximum likelihood
precision silviculture
Akaike criterion
forest inventory.
máxima verossimilhança
silvicultura de precisão
critério de Akaike
inventário florestal.
description This study aimed to use the share parameters of the geo-statistical models applied to maximum likelihood estimators to predict the volumes per hectare in three fragments of a Deciduous Forest located in Santa Teresa, RS state, employing the ‘Borrow Strength’ approach. Data were collected in 56 sampling units (S.U) of variable sizes with approximately 250 m2 for a total of nine ha, distributed in a systematic grid of 40 x 40 m. Dendrometric variables from individuals with DBH ≥ 10 cm near the center of the S.U. were measured. Two approaches to the data set were prepared, the first of which considering both areas entirely independent themselves, subdivided into two types: a fit to non-spatial model (NSM) and a fit to the maximum likelihood (ML) not shared (individual adjustment) model. The second approach described the adjustment of the shared as a function of random error or nugget, comprising models: a shared model without fixed nugget (variability between S.U) and a shared model with fixed nugget (variability within S.U) models, using a logarithmic function of M.L applied to the Matèrn family of exponential correlation model. Then, the models were compared using Akaike information criterion (AIC) and by degree of spatial dependence for subsequent preparation of both kriging and prediction surfaces of the selected models. It was observed that the combined volume models to estimate values were higher for the AIC values and spatial dependence with respect to the adjustments for the individual areas. Among the shared models, it was observed that there was a gain in the parameter estimates using the fixed nugget, which resulted in a higher correlation of samples and spatial dependence (AP = 88 m), than the shared models without the fixed nugget (AP = 75 and 66 m). The AIC was efficient because it compared the different levels of proposed adjustments to the methodology of the study, selecting a model with parsimony and compatible with the spatial distribution patterns found in the areas. The use of combined models for data sampling in different areas with the introduction of the error estimate intra-plot (fixed nugget) in the equations of MV can be suggested to increase the correlation between the S.U and combined evaluation of the AIC plus the degree of spatial dependence in estimating dendrometric variables.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/27739
10.5902/1980509827739
url https://periodicos.ufsm.br/cienciaflorestal/article/view/27739
identifier_str_mv 10.5902/1980509827739
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/27739/15746
dc.rights.driver.fl_str_mv Copyright (c) 2017 Ciência Florestal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2017 Ciência Florestal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 27 No. 2 (2017); 597-607
Ciência Florestal; v. 27 n. 2 (2017); 597-607
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944131976364032