Hybrid factor reduction as a data mining technique for large scale educational assessment

Detalhes bibliográficos
Autor(a) principal: Lopes, Simone Mágna Menezes Carneiro
Data de Publicação: 2022
Outros Autores: Freire, José Carlos da Silveira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista de Gestão e Avaliação Educacional
Texto Completo: http://periodicos.ufsm.br/regae/article/view/70944
Resumo: Large-scale assessment has aroused the interest of researchers, governments and civil society. Such interest lies in the fact that its results have guided public policies on management and financing of basic education. However, the data produced by the Brazilian Basic Education Evaluation System are underused by school management as a diagnostic and learning promotion tool. In this perspective, we sought to identify factors that influenced the Ideb index in the 2017 assessment for the 9th grade of elementary education among schools in the state network of Tocantins. To this end, an exploratory multivariate factor analysis was performed to identify the factors that are related to a higher or lower performance in the Ideb assessment. Given the variation in the scales of the Saeb questionnaires and the Ideb scores that vary from 0 to 10, there was the need to dichotomize the scales. Therefore, the multivariate factor analysis was based both on the factor extraction by means of the principal components method from Pearson's correlation and on that obtained by means of the tetrachoric correlation. It was concluded that the application of the method will help the manager to understand the indexes raised and draw a perspective with specific points where improvement is needed, besides making it possible to extract important information so that the management can intervene in a focused way in the application of resources and guide public policies.
id UFSM-7_077af3c8acead9c955a589b5b1ec26b8
oai_identifier_str oai:ojs.pkp.sfu.ca:article/70944
network_acronym_str UFSM-7
network_name_str Revista de Gestão e Avaliação Educacional
repository_id_str
spelling Hybrid factor reduction as a data mining technique for large scale educational assessmentRedução fatorial híbrida como técnica de mineração de dados da avaliação educacional em larga escala Avaliação educacionalAvaliação em larga escala. IDEB. Qualidade do ensino.Análise fatorialLarge-scale assessment has aroused the interest of researchers, governments and civil society. Such interest lies in the fact that its results have guided public policies on management and financing of basic education. However, the data produced by the Brazilian Basic Education Evaluation System are underused by school management as a diagnostic and learning promotion tool. In this perspective, we sought to identify factors that influenced the Ideb index in the 2017 assessment for the 9th grade of elementary education among schools in the state network of Tocantins. To this end, an exploratory multivariate factor analysis was performed to identify the factors that are related to a higher or lower performance in the Ideb assessment. Given the variation in the scales of the Saeb questionnaires and the Ideb scores that vary from 0 to 10, there was the need to dichotomize the scales. Therefore, the multivariate factor analysis was based both on the factor extraction by means of the principal components method from Pearson's correlation and on that obtained by means of the tetrachoric correlation. It was concluded that the application of the method will help the manager to understand the indexes raised and draw a perspective with specific points where improvement is needed, besides making it possible to extract important information so that the management can intervene in a focused way in the application of resources and guide public policies.A avaliação em larga escala tem despertado o interesse de pesquisadores, de governos e da sociedade. Tal interesse reside no fato de que seus resultados têm orientado as políticas públicas de gestão e financiamento da educação básica. Entretanto, os dados produzidos pelo Sistema de Avaliação da Educação Básica do Brasil são subutilizados pela gestão escolar como ferramenta de diagnóstico e de promoção da aprendizagem. Nessa perspectiva, buscou-se identificar fatores que influenciaram no índice do Ideb na avaliação do ano de 2017, para o 9º ano do ensino fundamental, entre escolas da rede estadual do Tocantins. Para isso, foi realizada uma análise fatorial multivariada exploratória para identificar os fatores os quais estão relacionados a um maior ou menor desempenho na avaliação do Ideb. Diante da variação das escalas dos questionários da Saeb e das notas do Ideb que variam de 0 a 10, houve a necessidade da dicotomização das escalas, por isso a análise fatorial multivariada pautou-se, tanto na extração fatorial por meio do método dos componentes principais a partir da correlação de Pearson, quanto na obtida por meio da correlação tetracórica. Concluiu-se que aplicação do método irá auxiliar o gestor em compreender os índices levantados e traçar uma perspectiva com pontos específicos em que se deve melhorar, além de possibilitar a extração de informações importantes para que a gestão possa intervir, de forma focalizada, na aplicação de recursos e nortear políticas públicas.Universidade Federal de Santa Maria2022-09-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://periodicos.ufsm.br/regae/article/view/7094410.5902/2318133870944Regae: Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-16Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-162318-13382176-2171reponame:Revista de Gestão e Avaliação Educacionalinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttp://periodicos.ufsm.br/regae/article/view/70944/49105Copyright (c) 2022 Revista de Gestão e Avaliação Educacionalinfo:eu-repo/semantics/openAccessLopes, Simone Mágna Menezes CarneiroFreire, José Carlos da Silveira2022-09-29T13:18:30Zoai:ojs.pkp.sfu.ca:article/70944Revistahttps://periodicos.ufsm.br/regaePUBhttp://cascavel.ufsm.br/revistas/ojs-2.2.2/index.php/regae/oai||revistaregae@gmail.com2318-13382176-2171opendoar:2022-09-29T13:18:30Revista de Gestão e Avaliação Educacional - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Hybrid factor reduction as a data mining technique for large scale educational assessment
Redução fatorial híbrida como técnica de mineração de dados da avaliação educacional em larga escala
title Hybrid factor reduction as a data mining technique for large scale educational assessment
spellingShingle Hybrid factor reduction as a data mining technique for large scale educational assessment
Lopes, Simone Mágna Menezes Carneiro
Avaliação educacional
Avaliação em larga escala. IDEB. Qualidade do ensino.
Análise fatorial
title_short Hybrid factor reduction as a data mining technique for large scale educational assessment
title_full Hybrid factor reduction as a data mining technique for large scale educational assessment
title_fullStr Hybrid factor reduction as a data mining technique for large scale educational assessment
title_full_unstemmed Hybrid factor reduction as a data mining technique for large scale educational assessment
title_sort Hybrid factor reduction as a data mining technique for large scale educational assessment
author Lopes, Simone Mágna Menezes Carneiro
author_facet Lopes, Simone Mágna Menezes Carneiro
Freire, José Carlos da Silveira
author_role author
author2 Freire, José Carlos da Silveira
author2_role author
dc.contributor.author.fl_str_mv Lopes, Simone Mágna Menezes Carneiro
Freire, José Carlos da Silveira
dc.subject.por.fl_str_mv Avaliação educacional
Avaliação em larga escala. IDEB. Qualidade do ensino.
Análise fatorial
topic Avaliação educacional
Avaliação em larga escala. IDEB. Qualidade do ensino.
Análise fatorial
description Large-scale assessment has aroused the interest of researchers, governments and civil society. Such interest lies in the fact that its results have guided public policies on management and financing of basic education. However, the data produced by the Brazilian Basic Education Evaluation System are underused by school management as a diagnostic and learning promotion tool. In this perspective, we sought to identify factors that influenced the Ideb index in the 2017 assessment for the 9th grade of elementary education among schools in the state network of Tocantins. To this end, an exploratory multivariate factor analysis was performed to identify the factors that are related to a higher or lower performance in the Ideb assessment. Given the variation in the scales of the Saeb questionnaires and the Ideb scores that vary from 0 to 10, there was the need to dichotomize the scales. Therefore, the multivariate factor analysis was based both on the factor extraction by means of the principal components method from Pearson's correlation and on that obtained by means of the tetrachoric correlation. It was concluded that the application of the method will help the manager to understand the indexes raised and draw a perspective with specific points where improvement is needed, besides making it possible to extract important information so that the management can intervene in a focused way in the application of resources and guide public policies.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-28
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://periodicos.ufsm.br/regae/article/view/70944
10.5902/2318133870944
url http://periodicos.ufsm.br/regae/article/view/70944
identifier_str_mv 10.5902/2318133870944
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv http://periodicos.ufsm.br/regae/article/view/70944/49105
dc.rights.driver.fl_str_mv Copyright (c) 2022 Revista de Gestão e Avaliação Educacional
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Revista de Gestão e Avaliação Educacional
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Regae: Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-16
Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-16
2318-1338
2176-2171
reponame:Revista de Gestão e Avaliação Educacional
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Revista de Gestão e Avaliação Educacional
collection Revista de Gestão e Avaliação Educacional
repository.name.fl_str_mv Revista de Gestão e Avaliação Educacional - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||revistaregae@gmail.com
_version_ 1809281068872761344