Hybrid factor reduction as a data mining technique for large scale educational assessment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista de Gestão e Avaliação Educacional |
Texto Completo: | http://periodicos.ufsm.br/regae/article/view/70944 |
Resumo: | Large-scale assessment has aroused the interest of researchers, governments and civil society. Such interest lies in the fact that its results have guided public policies on management and financing of basic education. However, the data produced by the Brazilian Basic Education Evaluation System are underused by school management as a diagnostic and learning promotion tool. In this perspective, we sought to identify factors that influenced the Ideb index in the 2017 assessment for the 9th grade of elementary education among schools in the state network of Tocantins. To this end, an exploratory multivariate factor analysis was performed to identify the factors that are related to a higher or lower performance in the Ideb assessment. Given the variation in the scales of the Saeb questionnaires and the Ideb scores that vary from 0 to 10, there was the need to dichotomize the scales. Therefore, the multivariate factor analysis was based both on the factor extraction by means of the principal components method from Pearson's correlation and on that obtained by means of the tetrachoric correlation. It was concluded that the application of the method will help the manager to understand the indexes raised and draw a perspective with specific points where improvement is needed, besides making it possible to extract important information so that the management can intervene in a focused way in the application of resources and guide public policies. |
id |
UFSM-7_077af3c8acead9c955a589b5b1ec26b8 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/70944 |
network_acronym_str |
UFSM-7 |
network_name_str |
Revista de Gestão e Avaliação Educacional |
repository_id_str |
|
spelling |
Hybrid factor reduction as a data mining technique for large scale educational assessmentRedução fatorial híbrida como técnica de mineração de dados da avaliação educacional em larga escala Avaliação educacionalAvaliação em larga escala. IDEB. Qualidade do ensino.Análise fatorialLarge-scale assessment has aroused the interest of researchers, governments and civil society. Such interest lies in the fact that its results have guided public policies on management and financing of basic education. However, the data produced by the Brazilian Basic Education Evaluation System are underused by school management as a diagnostic and learning promotion tool. In this perspective, we sought to identify factors that influenced the Ideb index in the 2017 assessment for the 9th grade of elementary education among schools in the state network of Tocantins. To this end, an exploratory multivariate factor analysis was performed to identify the factors that are related to a higher or lower performance in the Ideb assessment. Given the variation in the scales of the Saeb questionnaires and the Ideb scores that vary from 0 to 10, there was the need to dichotomize the scales. Therefore, the multivariate factor analysis was based both on the factor extraction by means of the principal components method from Pearson's correlation and on that obtained by means of the tetrachoric correlation. It was concluded that the application of the method will help the manager to understand the indexes raised and draw a perspective with specific points where improvement is needed, besides making it possible to extract important information so that the management can intervene in a focused way in the application of resources and guide public policies.A avaliação em larga escala tem despertado o interesse de pesquisadores, de governos e da sociedade. Tal interesse reside no fato de que seus resultados têm orientado as políticas públicas de gestão e financiamento da educação básica. Entretanto, os dados produzidos pelo Sistema de Avaliação da Educação Básica do Brasil são subutilizados pela gestão escolar como ferramenta de diagnóstico e de promoção da aprendizagem. Nessa perspectiva, buscou-se identificar fatores que influenciaram no índice do Ideb na avaliação do ano de 2017, para o 9º ano do ensino fundamental, entre escolas da rede estadual do Tocantins. Para isso, foi realizada uma análise fatorial multivariada exploratória para identificar os fatores os quais estão relacionados a um maior ou menor desempenho na avaliação do Ideb. Diante da variação das escalas dos questionários da Saeb e das notas do Ideb que variam de 0 a 10, houve a necessidade da dicotomização das escalas, por isso a análise fatorial multivariada pautou-se, tanto na extração fatorial por meio do método dos componentes principais a partir da correlação de Pearson, quanto na obtida por meio da correlação tetracórica. Concluiu-se que aplicação do método irá auxiliar o gestor em compreender os índices levantados e traçar uma perspectiva com pontos específicos em que se deve melhorar, além de possibilitar a extração de informações importantes para que a gestão possa intervir, de forma focalizada, na aplicação de recursos e nortear políticas públicas.Universidade Federal de Santa Maria2022-09-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://periodicos.ufsm.br/regae/article/view/7094410.5902/2318133870944Regae: Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-16Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-162318-13382176-2171reponame:Revista de Gestão e Avaliação Educacionalinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttp://periodicos.ufsm.br/regae/article/view/70944/49105Copyright (c) 2022 Revista de Gestão e Avaliação Educacionalinfo:eu-repo/semantics/openAccessLopes, Simone Mágna Menezes CarneiroFreire, José Carlos da Silveira2022-09-29T13:18:30Zoai:ojs.pkp.sfu.ca:article/70944Revistahttps://periodicos.ufsm.br/regaePUBhttp://cascavel.ufsm.br/revistas/ojs-2.2.2/index.php/regae/oai||revistaregae@gmail.com2318-13382176-2171opendoar:2022-09-29T13:18:30Revista de Gestão e Avaliação Educacional - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Hybrid factor reduction as a data mining technique for large scale educational assessment Redução fatorial híbrida como técnica de mineração de dados da avaliação educacional em larga escala |
title |
Hybrid factor reduction as a data mining technique for large scale educational assessment |
spellingShingle |
Hybrid factor reduction as a data mining technique for large scale educational assessment Lopes, Simone Mágna Menezes Carneiro Avaliação educacional Avaliação em larga escala. IDEB. Qualidade do ensino. Análise fatorial |
title_short |
Hybrid factor reduction as a data mining technique for large scale educational assessment |
title_full |
Hybrid factor reduction as a data mining technique for large scale educational assessment |
title_fullStr |
Hybrid factor reduction as a data mining technique for large scale educational assessment |
title_full_unstemmed |
Hybrid factor reduction as a data mining technique for large scale educational assessment |
title_sort |
Hybrid factor reduction as a data mining technique for large scale educational assessment |
author |
Lopes, Simone Mágna Menezes Carneiro |
author_facet |
Lopes, Simone Mágna Menezes Carneiro Freire, José Carlos da Silveira |
author_role |
author |
author2 |
Freire, José Carlos da Silveira |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lopes, Simone Mágna Menezes Carneiro Freire, José Carlos da Silveira |
dc.subject.por.fl_str_mv |
Avaliação educacional Avaliação em larga escala. IDEB. Qualidade do ensino. Análise fatorial |
topic |
Avaliação educacional Avaliação em larga escala. IDEB. Qualidade do ensino. Análise fatorial |
description |
Large-scale assessment has aroused the interest of researchers, governments and civil society. Such interest lies in the fact that its results have guided public policies on management and financing of basic education. However, the data produced by the Brazilian Basic Education Evaluation System are underused by school management as a diagnostic and learning promotion tool. In this perspective, we sought to identify factors that influenced the Ideb index in the 2017 assessment for the 9th grade of elementary education among schools in the state network of Tocantins. To this end, an exploratory multivariate factor analysis was performed to identify the factors that are related to a higher or lower performance in the Ideb assessment. Given the variation in the scales of the Saeb questionnaires and the Ideb scores that vary from 0 to 10, there was the need to dichotomize the scales. Therefore, the multivariate factor analysis was based both on the factor extraction by means of the principal components method from Pearson's correlation and on that obtained by means of the tetrachoric correlation. It was concluded that the application of the method will help the manager to understand the indexes raised and draw a perspective with specific points where improvement is needed, besides making it possible to extract important information so that the management can intervene in a focused way in the application of resources and guide public policies. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://periodicos.ufsm.br/regae/article/view/70944 10.5902/2318133870944 |
url |
http://periodicos.ufsm.br/regae/article/view/70944 |
identifier_str_mv |
10.5902/2318133870944 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
http://periodicos.ufsm.br/regae/article/view/70944/49105 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Revista de Gestão e Avaliação Educacional info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Revista de Gestão e Avaliação Educacional |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Regae: Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-16 Revista de Gestão e Avaliação Educacional; v. 11, n. 20, 2022, publicação contínua; e70944, p. 1-16 2318-1338 2176-2171 reponame:Revista de Gestão e Avaliação Educacional instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Revista de Gestão e Avaliação Educacional |
collection |
Revista de Gestão e Avaliação Educacional |
repository.name.fl_str_mv |
Revista de Gestão e Avaliação Educacional - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||revistaregae@gmail.com |
_version_ |
1809281068872761344 |