Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000p6xd |
Texto Completo: | http://repositorio.ufsm.br/handle/1/3612 |
Resumo: | The soil tillage systems modify its water balance and for the correct irrigation management is fundamental to determining the runoff and effective rainfall, which helps to maximize the use of rainwater and minimizes the use of supplemental irrigation. The objective of this study was to determine, model and estimate the runoff and the effective rainfall during the development cycle of the common black bean and maize in soil with and without straw on the surface, in different land slope and rainfall intensities simulated, using the field experiments, multivariate equations, the Curve Number Method (CN) and the SIMDualKc Model. Two experiments were conducted in the field with crops of black beans and maize, where different intensities of simulated rainfall (35, 70 and 105 mm h-1) were applied at different times of the crop cycle (soil cover of 0, 28, 63 and 100% by the canopy beans; 0, 30, 72 and 100% by canopy of maize) and distinct land slope (1, 5 and 10%) in soil without and with (5 Mg ha-1) of oat straw on the surface. The runoff values observed were compared with those estimated by the CN method, suggesting new values of CN to improve the estimate. From the set of data collected from the field analysis of multiple linear regression to estimate runoff and simulations with SIMDualKc model to estimate runoff and effective rainfall were performed. The start time of the runoff, constant runoff rate, total runoff and the percentage of runoff in relation to the volume of rain were little influenced by the crops of beans and maize. Reductions in runoff were provided by the straw on the soil surface within 45 and 48% for the crops beans and maize, respectively. The CN method for the bean crop underestimated runoff by up to 10% for the soil without straw on the surface, and overestimated by up to 17% for the soil with straw. For maize, the method overestimated the runoff by up 32.4% in soil with straw and 12% in soil without straw. To improve estimation the CN, new values are proposed for CN, considering the crop, the presence or absence of straw on soil surface and intensity rain. The use of multiple linear regression analyzes indicated that the volume of precipitation (R2=0.52) and soil cover by straw (R2=0.18) are the variables with the greatest influence on runoff. Four multiple equations were generated, and the equation 2, whose input parameters are the volume of rain and amount of litter on the soil surface, was presented the best estimate of the runoff of a data set than the one that gave its origin. The SIMDualKc Model requires adjustments to estimate runoff and effective rainfall during the crop cycle of beans and maize, so consider the benefits of straw on the soil surface in reducing runoff. Thus, the suggested value of CN (CN=75) was changed to 71 and 87 to the black bean crop, and 56 and 79 for the maize crop for the soil with and without straw on the surface, respectively. |
id |
UFSM_12a727a2f530371d7b33c4cd3f5dea60 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/3612 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do soloRunoff estimate at different levels of canopy vegetative and soil coverPalhaDeclividade do terrenoChuva simuladaChuva efetivaMétodo curva númeroEquações multivariadasModelo SIMDualKcStrawLand slopeSimulated rainfallEffective rainCurve number methodMultiple linear regressionSIMDualKc ModelCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAThe soil tillage systems modify its water balance and for the correct irrigation management is fundamental to determining the runoff and effective rainfall, which helps to maximize the use of rainwater and minimizes the use of supplemental irrigation. The objective of this study was to determine, model and estimate the runoff and the effective rainfall during the development cycle of the common black bean and maize in soil with and without straw on the surface, in different land slope and rainfall intensities simulated, using the field experiments, multivariate equations, the Curve Number Method (CN) and the SIMDualKc Model. Two experiments were conducted in the field with crops of black beans and maize, where different intensities of simulated rainfall (35, 70 and 105 mm h-1) were applied at different times of the crop cycle (soil cover of 0, 28, 63 and 100% by the canopy beans; 0, 30, 72 and 100% by canopy of maize) and distinct land slope (1, 5 and 10%) in soil without and with (5 Mg ha-1) of oat straw on the surface. The runoff values observed were compared with those estimated by the CN method, suggesting new values of CN to improve the estimate. From the set of data collected from the field analysis of multiple linear regression to estimate runoff and simulations with SIMDualKc model to estimate runoff and effective rainfall were performed. The start time of the runoff, constant runoff rate, total runoff and the percentage of runoff in relation to the volume of rain were little influenced by the crops of beans and maize. Reductions in runoff were provided by the straw on the soil surface within 45 and 48% for the crops beans and maize, respectively. The CN method for the bean crop underestimated runoff by up to 10% for the soil without straw on the surface, and overestimated by up to 17% for the soil with straw. For maize, the method overestimated the runoff by up 32.4% in soil with straw and 12% in soil without straw. To improve estimation the CN, new values are proposed for CN, considering the crop, the presence or absence of straw on soil surface and intensity rain. The use of multiple linear regression analyzes indicated that the volume of precipitation (R2=0.52) and soil cover by straw (R2=0.18) are the variables with the greatest influence on runoff. Four multiple equations were generated, and the equation 2, whose input parameters are the volume of rain and amount of litter on the soil surface, was presented the best estimate of the runoff of a data set than the one that gave its origin. The SIMDualKc Model requires adjustments to estimate runoff and effective rainfall during the crop cycle of beans and maize, so consider the benefits of straw on the soil surface in reducing runoff. Thus, the suggested value of CN (CN=75) was changed to 71 and 87 to the black bean crop, and 56 and 79 for the maize crop for the soil with and without straw on the surface, respectively.Conselho Nacional de Desenvolvimento Científico e TecnológicoOs sistemas de manejo do solo modificam o seu balanço hídrico e para o correto manejo da irrigação é de fundamental importância a determinação do escoamento superficial e da chuva efetiva, o que contribui para maximizar o uso da água das chuvas e minimiza a utilização de irrigação suplementar. O objetivo do presente trabalho foi determinar, modelar e estimar o escoamento superficial e a chuva efetiva durante o ciclo de desenvolvimento das culturas do feijão e milho, cultivados em solo com e sem palha na superfície, em diferentes declividade do terreno e intensidades de chuvas simuladas, utilizando experimentos a campo, equações multivariadas, o método Curva Número (CN) e o modelo SIMDualKc. Foram realizados dois experimentos à campo, com as culturas do feijão e milho, em que foram aplicadas diferentes intensidades de chuvas simuladas (35, 70 e 105 mm h-1), em diferentes momentos do ciclo das culturas (cobertura do solo de 0, 28, 63 e 100% pelo dossel vegetativo do feijão; 0, 30, 72 e 100% pelo dossel vegetativo do milho) e distintas declividade do terreno (1, 5 e 10%), em solo sem e com (5 Mg ha-1) palha de aveia preta na superfície. Os valores de escoamento superficial observados foram comparados com os estimados pelo método CN, sugerindo-se novos valores de CN para melhorar a estimativa. A partir do conjunto de dados coletados a campo, foram realizadas análises de regressão linear múltiplas para a estimativa do escoamento superficial e, simulações com o modelo SIMDualKc para estimativa do escoamento superficial e da chuva efetiva. O tempo de início do escoamento, a taxa constante de escoamento, o escoamento total e a porcentagem de escoamento em relação ao volume da chuva foram pouco influenciados pelo crescimento do dossel vegetativo das plantas de feijão e milho. Reduções no escoamento superficial foram proporcionadas pela presença de palha na superfície do solo, em até 45 e 48% para as culturas do feijão e milho, respectivamente. O método CN para a cultura do feijão subestimou o escoamento superficial em até 10% para o solo sem palha na superfície e, superestimou em até 17% para o solo com palha. Para a cultura do milho, o método CN superestimou o escoamento superficial em até 32,4% no solo com palha e 12% no solo sem palha. Para melhorar a estimativa do método CN, foram propostos novos valores de CN, considerando a cultura, a presença ou não de palha na superfície do solo e a intensidade da chuva. A utilização de análises de regressão linear múltiplas indicaram que o volume da chuva (R2=0,52) e a cobertura do solo por palha (R2=0,18) são as variáveis com maior influência sobre o escoamento superficial. Foram geradas quatro equações múltiplas, sendo que a equação 2, cujos parâmetros de entrada são o volume da chuva e quantidade de palha na superfície do solo, foi a que apresentou a melhor estimativa do escoamento superficial de um conjunto de dados diferente daquele que lhe deu origem. O modelo SIMDualKc necessita de ajustes para estimar o escoamento superficial e a chuva efetiva durante o ciclo das culturas de feijão e milho, de modo que considere os benefícios da palha na superfície do solo na redução do escoamento superficial. Desta forma, o valor sugerido de CN (CN=75) foi alterado para 71 e 87 para a cultura do feijão e, 56 e 79 para a cultura do milho, para o solo com e sem palha na superfície, respectivamente.Universidade Federal de Santa MariaBREngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCarlesso, Reimarhttp://lattes.cnpq.br/4740272927848914Michelon, Cleudson Joséhttp://lattes.cnpq.br/7524461221954574Eltz, Flavio Luiz Folettohttp://lattes.cnpq.br/2238828304382975Petry, Mirta Teresinhahttp://lattes.cnpq.br/0358609083747198Martins, Juliano Dalcinhttp://lattes.cnpq.br/5624403392916420Knies, Alberto Eduardo2014-10-072014-10-072014-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfKNIES, Alberto Eduardo. Runoff estimate at different levels of canopy vegetative and soil cover. 2014. 120 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2014.http://repositorio.ufsm.br/handle/1/3612ark:/26339/001300000p6xdporinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-05-31T13:05:37Zoai:repositorio.ufsm.br:1/3612Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-05-31T13:05:37Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo Runoff estimate at different levels of canopy vegetative and soil cover |
title |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo |
spellingShingle |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo Knies, Alberto Eduardo Palha Declividade do terreno Chuva simulada Chuva efetiva Método curva número Equações multivariadas Modelo SIMDualKc Straw Land slope Simulated rainfall Effective rain Curve number method Multiple linear regression SIMDualKc Model CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
title_short |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo |
title_full |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo |
title_fullStr |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo |
title_full_unstemmed |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo |
title_sort |
Estimativa do escoamento superficial em diferentes níveis de dossel vegetativo e cobertura do solo |
author |
Knies, Alberto Eduardo |
author_facet |
Knies, Alberto Eduardo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carlesso, Reimar http://lattes.cnpq.br/4740272927848914 Michelon, Cleudson José http://lattes.cnpq.br/7524461221954574 Eltz, Flavio Luiz Foletto http://lattes.cnpq.br/2238828304382975 Petry, Mirta Teresinha http://lattes.cnpq.br/0358609083747198 Martins, Juliano Dalcin http://lattes.cnpq.br/5624403392916420 |
dc.contributor.author.fl_str_mv |
Knies, Alberto Eduardo |
dc.subject.por.fl_str_mv |
Palha Declividade do terreno Chuva simulada Chuva efetiva Método curva número Equações multivariadas Modelo SIMDualKc Straw Land slope Simulated rainfall Effective rain Curve number method Multiple linear regression SIMDualKc Model CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
topic |
Palha Declividade do terreno Chuva simulada Chuva efetiva Método curva número Equações multivariadas Modelo SIMDualKc Straw Land slope Simulated rainfall Effective rain Curve number method Multiple linear regression SIMDualKc Model CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
description |
The soil tillage systems modify its water balance and for the correct irrigation management is fundamental to determining the runoff and effective rainfall, which helps to maximize the use of rainwater and minimizes the use of supplemental irrigation. The objective of this study was to determine, model and estimate the runoff and the effective rainfall during the development cycle of the common black bean and maize in soil with and without straw on the surface, in different land slope and rainfall intensities simulated, using the field experiments, multivariate equations, the Curve Number Method (CN) and the SIMDualKc Model. Two experiments were conducted in the field with crops of black beans and maize, where different intensities of simulated rainfall (35, 70 and 105 mm h-1) were applied at different times of the crop cycle (soil cover of 0, 28, 63 and 100% by the canopy beans; 0, 30, 72 and 100% by canopy of maize) and distinct land slope (1, 5 and 10%) in soil without and with (5 Mg ha-1) of oat straw on the surface. The runoff values observed were compared with those estimated by the CN method, suggesting new values of CN to improve the estimate. From the set of data collected from the field analysis of multiple linear regression to estimate runoff and simulations with SIMDualKc model to estimate runoff and effective rainfall were performed. The start time of the runoff, constant runoff rate, total runoff and the percentage of runoff in relation to the volume of rain were little influenced by the crops of beans and maize. Reductions in runoff were provided by the straw on the soil surface within 45 and 48% for the crops beans and maize, respectively. The CN method for the bean crop underestimated runoff by up to 10% for the soil without straw on the surface, and overestimated by up to 17% for the soil with straw. For maize, the method overestimated the runoff by up 32.4% in soil with straw and 12% in soil without straw. To improve estimation the CN, new values are proposed for CN, considering the crop, the presence or absence of straw on soil surface and intensity rain. The use of multiple linear regression analyzes indicated that the volume of precipitation (R2=0.52) and soil cover by straw (R2=0.18) are the variables with the greatest influence on runoff. Four multiple equations were generated, and the equation 2, whose input parameters are the volume of rain and amount of litter on the soil surface, was presented the best estimate of the runoff of a data set than the one that gave its origin. The SIMDualKc Model requires adjustments to estimate runoff and effective rainfall during the crop cycle of beans and maize, so consider the benefits of straw on the soil surface in reducing runoff. Thus, the suggested value of CN (CN=75) was changed to 71 and 87 to the black bean crop, and 56 and 79 for the maize crop for the soil with and without straw on the surface, respectively. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10-07 2014-10-07 2014-03-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
KNIES, Alberto Eduardo. Runoff estimate at different levels of canopy vegetative and soil cover. 2014. 120 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/3612 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000p6xd |
identifier_str_mv |
KNIES, Alberto Eduardo. Runoff estimate at different levels of canopy vegetative and soil cover. 2014. 120 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2014. ark:/26339/001300000p6xd |
url |
http://repositorio.ufsm.br/handle/1/3612 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria BR Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria BR Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172371941687296 |