Avaliação genética de uma população multirracial Angus-Nelore

Detalhes bibliográficos
Autor(a) principal: Prestes, Alan Miranda
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000g32t
Texto Completo: http://repositorio.ufsm.br/handle/1/11335
Resumo: The objective of this study was to evaluate the best model for the genetic evaluation for the trait average daily gain of weaning to post weaning (ADGWP), of a multiple-breed Nellore and Angus population, comprised of 49.634 animals sired by 34.006 dams and 793 sire, born between 1986 and 2015. The genetic evaluation for this population was performed through the methodology of Bayesian inference with the animal model and the criteria of choice were the Number of Parameters (Np), Deviance Information (DIC) and the conditional predictive ordinate (CPO). In the first chapter three models were tested: Traditional Animal Model (TAM), Multiple-Breed Animal Model With (MBAMW) and without segregation (MBAMWS). Based on the selection criteria, the MBAMW was chosen because it presents better adjustments, besides presenting the smallest number of parameters, thus reducing the computational demand. In the second chapter, heteroscedastic multiple-breed models (HMBM) were tested. A 2×2 factorial scheme of two residual variance models (homoscedastic (HO) or heteroscedastic (HE)) was used based on two distributive assumptions (Gaussian (G) and Student’s t (T)). The HMBM-T-HE presented the best fit for the population in question. The Spearman's ordering correlations of the breeding values predicted for the sires were high when all animals were considered (0.93 to 0.99). However, when these sires were separated in TOP (10%) these correlations were reduced drastically (from 0.05 to 0.96). These results support the implementation of robust multibreed models that account for sources of heteroscedasticity to increase the accuracy of genetic assessments of multiple-breed populations.
id UFSM_13316a126ac37fb74eab3bb4bd7a57b2
oai_identifier_str oai:repositorio.ufsm.br:1/11335
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Avaliação genética de uma população multirracial Angus-NeloreGenetic evaluation of a multibreed population Angus-NelloreBovinos de corteGanho médio diárioHeterocedasticidadeAverage daily gainBeef cattleHeteroscedasticityCNPQ::CIENCIAS AGRARIAS::ZOOTECNIAThe objective of this study was to evaluate the best model for the genetic evaluation for the trait average daily gain of weaning to post weaning (ADGWP), of a multiple-breed Nellore and Angus population, comprised of 49.634 animals sired by 34.006 dams and 793 sire, born between 1986 and 2015. The genetic evaluation for this population was performed through the methodology of Bayesian inference with the animal model and the criteria of choice were the Number of Parameters (Np), Deviance Information (DIC) and the conditional predictive ordinate (CPO). In the first chapter three models were tested: Traditional Animal Model (TAM), Multiple-Breed Animal Model With (MBAMW) and without segregation (MBAMWS). Based on the selection criteria, the MBAMW was chosen because it presents better adjustments, besides presenting the smallest number of parameters, thus reducing the computational demand. In the second chapter, heteroscedastic multiple-breed models (HMBM) were tested. A 2×2 factorial scheme of two residual variance models (homoscedastic (HO) or heteroscedastic (HE)) was used based on two distributive assumptions (Gaussian (G) and Student’s t (T)). The HMBM-T-HE presented the best fit for the population in question. The Spearman's ordering correlations of the breeding values predicted for the sires were high when all animals were considered (0.93 to 0.99). However, when these sires were separated in TOP (10%) these correlations were reduced drastically (from 0.05 to 0.96). These results support the implementation of robust multibreed models that account for sources of heteroscedasticity to increase the accuracy of genetic assessments of multiple-breed populations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESEste estudo teve como objetivo avaliar o melhor modelo para a avaliação genética para a característica de ganho médio diário da desmama ao sobreano (GMDD) de uma população multirracial Nelore e Angus formada por 49.634 animais filhos de 34.006 matrizes e 793 touros, nascidos entre 1986 e 2015. A avaliação genética para esta população foi realizada através da metodologia de inferência Bayesiana por meio de um modelo animal e os critérios de escolha foram o Número de Parâmetros (Np), de Informação da Deviance (DIC) e Ordenada Preditiva (CPO). No primeiro capítulo foram testados três modelos: Modelo Animal Tradicional (MAT), Modelo Animal Multirracial sem (MAMRSS) e com segregação (MAMRCS). Com base nos critérios de escolha, o MAMRSS foi escolhido por apresentar melhores ajustes, além de apresentar o menor número de parâmetros, reduzindo assim a demanda computacional. No segundo capítulo foram testados modelos multirraciais (MAMR) homo e heteroscedástico. Foi utilizado um esquema fatorial 2×2 de dois modelos de variância residual (homoscedástica (HO) ou heteroscedástica (HE)) baseado em dois pressupostos distributivos (Gaussiano (G) e t de Student (T)). O MAMR-T-HE foi o que apresentou melhor ajuste para a população em questão. As correlações de ordenamento de Spearman dos valores genéticos preditos, para os reprodutores, foram altas quando consideradas todos animais (0,93 a 0,99). No entanto, quando separados estes reprodutores em TOPs (10%) estas correlações foram reduzidas drasticamente (de 0,05 a 0,96). Estes resultados apoiam a implementação de modelos multirraciais robustos que contabilizam fontes de heteroscedasticidade para aumentar a precisão de avaliações genéticas de populações multirraciais.Universidade Federal de Santa MariaBrasilZootecniaUFSMPrograma de Pós-Graduação em ZootecniaCentro de Ciências RuraisRorato, Paulo Roberto Nogarahttp://lattes.cnpq.br/6804416984369871Schwengber, Eduardo Brumhttp://lattes.cnpq.br/9114290018329971Mello, Fernanda Cristina Bredahttp://lattes.cnpq.br/9702654931601290Braccini Neto, Joséhttp://lattes.cnpq.br/8008523281053209Oliveira, Maurício Morgadohttp://lattes.cnpq.br/8148153557539440Prestes, Alan Miranda2017-08-09T14:23:52Z2017-08-09T14:23:52Z2017-02-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/11335ark:/26339/001300000g32tporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-04-06T17:13:58Zoai:repositorio.ufsm.br:1/11335Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-04-06T17:13:58Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Avaliação genética de uma população multirracial Angus-Nelore
Genetic evaluation of a multibreed population Angus-Nellore
title Avaliação genética de uma população multirracial Angus-Nelore
spellingShingle Avaliação genética de uma população multirracial Angus-Nelore
Prestes, Alan Miranda
Bovinos de corte
Ganho médio diário
Heterocedasticidade
Average daily gain
Beef cattle
Heteroscedasticity
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
title_short Avaliação genética de uma população multirracial Angus-Nelore
title_full Avaliação genética de uma população multirracial Angus-Nelore
title_fullStr Avaliação genética de uma população multirracial Angus-Nelore
title_full_unstemmed Avaliação genética de uma população multirracial Angus-Nelore
title_sort Avaliação genética de uma população multirracial Angus-Nelore
author Prestes, Alan Miranda
author_facet Prestes, Alan Miranda
author_role author
dc.contributor.none.fl_str_mv Rorato, Paulo Roberto Nogara
http://lattes.cnpq.br/6804416984369871
Schwengber, Eduardo Brum
http://lattes.cnpq.br/9114290018329971
Mello, Fernanda Cristina Breda
http://lattes.cnpq.br/9702654931601290
Braccini Neto, José
http://lattes.cnpq.br/8008523281053209
Oliveira, Maurício Morgado
http://lattes.cnpq.br/8148153557539440
dc.contributor.author.fl_str_mv Prestes, Alan Miranda
dc.subject.por.fl_str_mv Bovinos de corte
Ganho médio diário
Heterocedasticidade
Average daily gain
Beef cattle
Heteroscedasticity
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
topic Bovinos de corte
Ganho médio diário
Heterocedasticidade
Average daily gain
Beef cattle
Heteroscedasticity
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
description The objective of this study was to evaluate the best model for the genetic evaluation for the trait average daily gain of weaning to post weaning (ADGWP), of a multiple-breed Nellore and Angus population, comprised of 49.634 animals sired by 34.006 dams and 793 sire, born between 1986 and 2015. The genetic evaluation for this population was performed through the methodology of Bayesian inference with the animal model and the criteria of choice were the Number of Parameters (Np), Deviance Information (DIC) and the conditional predictive ordinate (CPO). In the first chapter three models were tested: Traditional Animal Model (TAM), Multiple-Breed Animal Model With (MBAMW) and without segregation (MBAMWS). Based on the selection criteria, the MBAMW was chosen because it presents better adjustments, besides presenting the smallest number of parameters, thus reducing the computational demand. In the second chapter, heteroscedastic multiple-breed models (HMBM) were tested. A 2×2 factorial scheme of two residual variance models (homoscedastic (HO) or heteroscedastic (HE)) was used based on two distributive assumptions (Gaussian (G) and Student’s t (T)). The HMBM-T-HE presented the best fit for the population in question. The Spearman's ordering correlations of the breeding values predicted for the sires were high when all animals were considered (0.93 to 0.99). However, when these sires were separated in TOP (10%) these correlations were reduced drastically (from 0.05 to 0.96). These results support the implementation of robust multibreed models that account for sources of heteroscedasticity to increase the accuracy of genetic assessments of multiple-breed populations.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-09T14:23:52Z
2017-08-09T14:23:52Z
2017-02-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/11335
dc.identifier.dark.fl_str_mv ark:/26339/001300000g32t
url http://repositorio.ufsm.br/handle/1/11335
identifier_str_mv ark:/26339/001300000g32t
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172336974823424