Modelos discretos para agregação populacional
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/00130000033mp |
Texto Completo: | http://repositorio.ufsm.br/handle/1/19763 |
Resumo: | The mechanisms that can lead to the formation of heterogeneous distribution of individuals of many biological species arouse the interest of researchers from various areas. Many mathematical models of pattern formation are based on the Turing mechanism and on aggregation processes in relation to concentration gradients of a chemical substance. Recently, the Cahn-Hilliard principle of phase separation, which assumes density-dependent movement, has been used to study self-organized mussel patterns. In this work, we formulate three discrete models of coupled map networks with density-dependent movement to describe processes of aggregation and formation of spatial patterns. Some species show better development at intermediate densities, avoiding problems related to overpopulation or the difficulty of keeping the species at low population densities. Thus, the first model considers only the local perception of individuals for movement, while in the other two it is taken into account that they have a sharper sensory capacity and also analyze conditions at nearby sites. Several discrete model simulations were performed for several parameter sets and the continuous formulations corresponding to each one of the models were obtained. The resulting spatial patterns were classified as homogeneous, stable heterogeneous, oscillatory heterogeneous or unstable. Thus, we conclude that the three proposed models can represent aggregation mechanisms and that this process occurred more effectively considering that individuals can perceive not only the density at their site, but also at neighboring sites. |
id |
UFSM_161d12c99b51a92aafa403d859bb5b52 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/19763 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Modelos discretos para agregação populacionalDiscrete models for population aggregationAgregaçãoFormação de padrões espaciaisMovimentação dependente da densidadeRedes de mapas acopladosAggregationSpatial pattern formationDensity-dependent movementCoupled map networksCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAThe mechanisms that can lead to the formation of heterogeneous distribution of individuals of many biological species arouse the interest of researchers from various areas. Many mathematical models of pattern formation are based on the Turing mechanism and on aggregation processes in relation to concentration gradients of a chemical substance. Recently, the Cahn-Hilliard principle of phase separation, which assumes density-dependent movement, has been used to study self-organized mussel patterns. In this work, we formulate three discrete models of coupled map networks with density-dependent movement to describe processes of aggregation and formation of spatial patterns. Some species show better development at intermediate densities, avoiding problems related to overpopulation or the difficulty of keeping the species at low population densities. Thus, the first model considers only the local perception of individuals for movement, while in the other two it is taken into account that they have a sharper sensory capacity and also analyze conditions at nearby sites. Several discrete model simulations were performed for several parameter sets and the continuous formulations corresponding to each one of the models were obtained. The resulting spatial patterns were classified as homogeneous, stable heterogeneous, oscillatory heterogeneous or unstable. Thus, we conclude that the three proposed models can represent aggregation mechanisms and that this process occurred more effectively considering that individuals can perceive not only the density at their site, but also at neighboring sites.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESOs mecanismos que podem levar à formação de distribuição heterogênea de indivíduos de muitas espécies biológicas despertam o interesse de pesquisadores de diversas áreas. Muitos modelos matemáticos de formação de padrões são baseados no mecanismo de Turing e em processos de agregação em relação a gradientes de concentração de uma substância química. Recentemente, o princípio de Cahn-Hilliard de separação de fase, que supõe movimentação dependente da densidade, foi usado para estudar os padrões auto-organizados de mexilhões. Neste trabalho, formulamos três modelos discretos de redes de mapas acoplados com movimentação dependente da densidade para descrever processos de agregação e formação de padrões espaciais. Algumas espécies apresentam melhor desenvolvimento em densidades intermediárias, evitando problemas relacionados à superpopulação ou à dificuldade de manter a espécie em baixas densidades populacionais. Assim, o primeiro modelo considera apenas a percepção local dos indivíduos para a movimentação, enquanto nos outros dois é levado em conta que eles possuem uma capacidade sensorial mais aguçada e analisam também as condições em sítios próximos. Foram realizadas diversas simulações dos modelos discretos para vários conjuntos de parâmetros e foram obtidas as formulações contínuas correspondentes a cada um dos modelos. Os padrões espaciais resultantes foram classificados como homogêneos, heterogêneos estáveis, heterogêneos oscilatórios ou instáveis. Dessa forma, concluímos que os três modelos propostos conseguem representar mecanismos de agregação e que esse processo ocorreu de maneira mais eficaz ao considerar que os indivíduos conseguem perceber não só a densidade no sítio em que se encontram, mas também nos sítios vizinhos.Universidade Federal de Santa MariaBrasilMatemáticaUFSMPrograma de Pós-Graduação em MatemáticaCentro de Ciências Naturais e ExatasRodrigues, Luiz Alberto Díazhttp://lattes.cnpq.br/9198489380493317Meyer, João Frederico da Costa Azevedohttp://lattes.cnpq.br/9611168473482242Emmendorfer, Leonardo Ramoshttp://lattes.cnpq.br/1129100746134234Rossato, Marcelo Cargnelutti2020-03-06T19:57:21Z2020-03-06T19:57:21Z2019-12-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19763ark:/26339/00130000033mpporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2020-03-07T06:02:20Zoai:repositorio.ufsm.br:1/19763Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2020-03-07T06:02:20Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Modelos discretos para agregação populacional Discrete models for population aggregation |
title |
Modelos discretos para agregação populacional |
spellingShingle |
Modelos discretos para agregação populacional Rossato, Marcelo Cargnelutti Agregação Formação de padrões espaciais Movimentação dependente da densidade Redes de mapas acoplados Aggregation Spatial pattern formation Density-dependent movement Coupled map networks CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Modelos discretos para agregação populacional |
title_full |
Modelos discretos para agregação populacional |
title_fullStr |
Modelos discretos para agregação populacional |
title_full_unstemmed |
Modelos discretos para agregação populacional |
title_sort |
Modelos discretos para agregação populacional |
author |
Rossato, Marcelo Cargnelutti |
author_facet |
Rossato, Marcelo Cargnelutti |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Luiz Alberto Díaz http://lattes.cnpq.br/9198489380493317 Meyer, João Frederico da Costa Azevedo http://lattes.cnpq.br/9611168473482242 Emmendorfer, Leonardo Ramos http://lattes.cnpq.br/1129100746134234 |
dc.contributor.author.fl_str_mv |
Rossato, Marcelo Cargnelutti |
dc.subject.por.fl_str_mv |
Agregação Formação de padrões espaciais Movimentação dependente da densidade Redes de mapas acoplados Aggregation Spatial pattern formation Density-dependent movement Coupled map networks CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
Agregação Formação de padrões espaciais Movimentação dependente da densidade Redes de mapas acoplados Aggregation Spatial pattern formation Density-dependent movement Coupled map networks CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
The mechanisms that can lead to the formation of heterogeneous distribution of individuals of many biological species arouse the interest of researchers from various areas. Many mathematical models of pattern formation are based on the Turing mechanism and on aggregation processes in relation to concentration gradients of a chemical substance. Recently, the Cahn-Hilliard principle of phase separation, which assumes density-dependent movement, has been used to study self-organized mussel patterns. In this work, we formulate three discrete models of coupled map networks with density-dependent movement to describe processes of aggregation and formation of spatial patterns. Some species show better development at intermediate densities, avoiding problems related to overpopulation or the difficulty of keeping the species at low population densities. Thus, the first model considers only the local perception of individuals for movement, while in the other two it is taken into account that they have a sharper sensory capacity and also analyze conditions at nearby sites. Several discrete model simulations were performed for several parameter sets and the continuous formulations corresponding to each one of the models were obtained. The resulting spatial patterns were classified as homogeneous, stable heterogeneous, oscillatory heterogeneous or unstable. Thus, we conclude that the three proposed models can represent aggregation mechanisms and that this process occurred more effectively considering that individuals can perceive not only the density at their site, but also at neighboring sites. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-12 2020-03-06T19:57:21Z 2020-03-06T19:57:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/19763 |
dc.identifier.dark.fl_str_mv |
ark:/26339/00130000033mp |
url |
http://repositorio.ufsm.br/handle/1/19763 |
identifier_str_mv |
ark:/26339/00130000033mp |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Matemática UFSM Programa de Pós-Graduação em Matemática Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172273371348992 |