Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000zc9k |
Texto Completo: | http://repositorio.ufsm.br/handle/1/4842 |
Resumo: | Get the determination of grain yield and its variability is important in agriculture because it enables the understanding of factors that limit this income, giving more benefits to decision-making in the management of the tillage. Precision agriculture uses the yield mapping to determine the yield and spatial variability in the field. Unmanned aerial vehicles (UAV's) embedded with multispectral sensors became a potential tool for monitoring and identification of the spatial variability of yield in the field. This study had as objective to evaluate the efficiency of use of multispectral images from UAV to estimate the yield of corn (Zea mays L.). The survey was conducted in a field of 51.6 ha, under no-tillage and precision agriculture, at Boa Vista farm, located in São Martinho da Serra, Rio Grande do Sul. The soil is Neosolo and climate Cfa, according to Köppen classification. The culture used in the experiment was corn hybrid Pioneer 1630 HX, with spacing of 0.5 meters and 70.000 plants per hectare, sowing in 08/20/2014 and harvesting in 20/01/2015. The field image capture ocurred with the UAV model EI Asesor / 5 equipped with two CMOS sensors: the first, multispectral model Teracam ACD Micro, with 3 spectral bands: a band of green, red and near infrared, and the second sensor, model Flir Tau 2, with the spectral band of thermal infrared. It was generated the orthorectified mosaic multispectral images with spatial resolution of 0.7 meters and in sequence the normalized vegetation index (NDVI). Yield data were obtained through the John Deere 9670 combine, boarded with the monitor kit and harvesting sensors brand and model Trimble FMX. To evaluate the correlation of yield data with the multispectral image and the NDVI obtained with UAV was used R² Pearson, where were sampled 200 points stratified into 4 yield classes, being 50 points per class. To evaluate the correlation of corn yield with the image and NDVI index was used Pearson R², together with a visual evaluation. Yield data crossed with: the green band resulted in the linear equation with R² = 0.05, with low correlation; the infrared band near resulted in the linear equation with R² = 0.36, with an average correlation; the band Red resulted in the exponential equation with R² = 0.38, with an average correlation; the band in the thermal infrared resulted in negative linear equation with R² = 0.68, with high correlation; the NDVI resulted in the linear equation with R² = 0.75, with high correlation, and visual analysis of NDVI with the yield map also showed consistent results with statistical analysis. Therefore, was found a significant linear regression between NDVI vegetation index and corn yield, being possible to estimate corn yield potential through the UAV images, which provide monitoring of corn yield beforehand the harvest, confirming its importance for the precision agriculture. |
id |
UFSM_1a5e25d40e5afb6704029ae02b57caa1 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/4842 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripuladoCorn yield estimates (Zea Mays L.) through images obtained by unmanned aerial vehicleAgricultura de precisãoVANTNDVIPrecision agricultureUAVCNPQ::CIENCIAS AGRARIAS::AGRONOMIAGet the determination of grain yield and its variability is important in agriculture because it enables the understanding of factors that limit this income, giving more benefits to decision-making in the management of the tillage. Precision agriculture uses the yield mapping to determine the yield and spatial variability in the field. Unmanned aerial vehicles (UAV's) embedded with multispectral sensors became a potential tool for monitoring and identification of the spatial variability of yield in the field. This study had as objective to evaluate the efficiency of use of multispectral images from UAV to estimate the yield of corn (Zea mays L.). The survey was conducted in a field of 51.6 ha, under no-tillage and precision agriculture, at Boa Vista farm, located in São Martinho da Serra, Rio Grande do Sul. The soil is Neosolo and climate Cfa, according to Köppen classification. The culture used in the experiment was corn hybrid Pioneer 1630 HX, with spacing of 0.5 meters and 70.000 plants per hectare, sowing in 08/20/2014 and harvesting in 20/01/2015. The field image capture ocurred with the UAV model EI Asesor / 5 equipped with two CMOS sensors: the first, multispectral model Teracam ACD Micro, with 3 spectral bands: a band of green, red and near infrared, and the second sensor, model Flir Tau 2, with the spectral band of thermal infrared. It was generated the orthorectified mosaic multispectral images with spatial resolution of 0.7 meters and in sequence the normalized vegetation index (NDVI). Yield data were obtained through the John Deere 9670 combine, boarded with the monitor kit and harvesting sensors brand and model Trimble FMX. To evaluate the correlation of yield data with the multispectral image and the NDVI obtained with UAV was used R² Pearson, where were sampled 200 points stratified into 4 yield classes, being 50 points per class. To evaluate the correlation of corn yield with the image and NDVI index was used Pearson R², together with a visual evaluation. Yield data crossed with: the green band resulted in the linear equation with R² = 0.05, with low correlation; the infrared band near resulted in the linear equation with R² = 0.36, with an average correlation; the band Red resulted in the exponential equation with R² = 0.38, with an average correlation; the band in the thermal infrared resulted in negative linear equation with R² = 0.68, with high correlation; the NDVI resulted in the linear equation with R² = 0.75, with high correlation, and visual analysis of NDVI with the yield map also showed consistent results with statistical analysis. Therefore, was found a significant linear regression between NDVI vegetation index and corn yield, being possible to estimate corn yield potential through the UAV images, which provide monitoring of corn yield beforehand the harvest, confirming its importance for the precision agriculture.Obter a determinação do rendimento de grãos e sua variabilidade é importante na agricultura pois possibilita o entendimento de fatores que limitam este rendimento, dando maior subsídio à tomada de decisão no manejo da lavoura. A agricultura de precisão utiliza o mapeamento da produtividade para determinar o rendimento e sua variabilidade espacial no talhão. Os veículos aéreos não tripulados (VANT s) embarcados com sensores multiespectrais tornaram-se ferramenta potencial para monitoramento e identificação da variabilidade espacial de produtividade. O presente estudo teve como objetivo avaliar a eficiência da utilização de imagens multiespectrais provenientes de VANT para estimar a produtividade da cultura de milho (Zea Mays L.). A pesquisa foi realizada em um talhão de 51,6 ha, sob sistema de plantio direto e agricultura de precisão, na fazenda Boa Vista, localizada em São Martinho da Serra, Rio Grande do Sul. O solo é Neosolo e o clima Cfa, conforme a classificação de Köppen. A cultura utilizada no experimento foi o híbrido de milho Pioneer 1630 hx, com espaçamento de 0,5 metros e 70 mil plantas por hectare, semeadura em 20/08/2014 e colheita em 20/01/2015. A captura de imagens do talhão ocorreu com o VANT modelo EI Asesor/5 equipado com dois sensores CMOS: o primeiro, multiespectral modelo Teracam ACD Micro, com 3 bandas espectrais: a banda do verde, do vermelho e do infravermelho próximo, e o segundo sensor, modelo Flir Tau 2, com a banda espectral do infravermelho termal. Foi gerado o mosaico ortorretificado multiespectral das imagens, com resolução espacial de 0,7 metros e, na sequência, o índice de vegetação normalizado (NDVI). Os dados de produtividade foram obtidos através da colhedora John Deere 9670, embarcada com o kit de monitor e sensores de colheita da marca e modelo Trimble FMX. Para avaliar a correlação do cruzamento dos dados de produtividade com a imagem multiespectral e o NDVI obtido com VANT utilizou-se o R² de Pearson, onde foram amostrados 200 pontos estratificados em 4 classes de produtividade, sendo 50 pontos por classe. Para avaliar a correlação de produtividade de milho com a imagem e índice de vegetação NDVI foi utilizado o R² de Pearson, juntamente com uma avaliação visual. Os dados de produtividade cruzados com: a banda do verde resultou na equação linear com R²= 0,05, apresentando baixa correlação; a banda do infravermelho próximo resultou na equação linear com R²= 0,36, apresentando média correlação; a banda do vermelho resultou na equação exponencial com R²= 0,38, apresentando média correlação; a banda do infravermelho termal resultou na equação linear negativa com R²= 0,68, apresentando alta correlação; o NDVI resultou na equação linear com R²= 0,75, apresentando alta correlação, e a análise visual do NDVI com o mapa de produtividade também apresentou resultado condizente com a análise estatística. Assim, encontrou-se uma regressão linear significativa entre o índice de vegetação NDVI e a produtividade de milho, sendo possível estimar o potencial de produtividade desta cultura através das imagens de VANT, os quais proporcionam o monitoramento da produtividade de milho antecipadamente à colheita, confirmando sua importância para a agricultura de precisão.Universidade Federal de Santa MariaBRTecnologia em Agricultura de PrecisãoUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoBrandelero, Catizehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4732195Y0Miola, Alessandro Carvalhohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760087D6Wendling, Ademirhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4762984J2Fernandes, Pablo2017-01-182017-01-182016-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfFERNANDES, Pablo. CORN YIELD ESTIMATES (ZEA MAYS L.) THROUGH IMAGES OBTAINED BY UNMANNED AERIAL VEHICLE. 2016. 79 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2016.http://repositorio.ufsm.br/handle/1/4842ark:/26339/001300000zc9kporinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-29T14:44:47Zoai:repositorio.ufsm.br:1/4842Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-29T14:44:47Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado Corn yield estimates (Zea Mays L.) through images obtained by unmanned aerial vehicle |
title |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado |
spellingShingle |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado Fernandes, Pablo Agricultura de precisão VANT NDVI Precision agriculture UAV CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado |
title_full |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado |
title_fullStr |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado |
title_full_unstemmed |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado |
title_sort |
Estimativa da produtividade de milho (Zea Mays L.) através de imagens obtidas por veículo aéreo não tripulado |
author |
Fernandes, Pablo |
author_facet |
Fernandes, Pablo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brandelero, Catize http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4732195Y0 Miola, Alessandro Carvalho http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4760087D6 Wendling, Ademir http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4762984J2 |
dc.contributor.author.fl_str_mv |
Fernandes, Pablo |
dc.subject.por.fl_str_mv |
Agricultura de precisão VANT NDVI Precision agriculture UAV CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Agricultura de precisão VANT NDVI Precision agriculture UAV CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Get the determination of grain yield and its variability is important in agriculture because it enables the understanding of factors that limit this income, giving more benefits to decision-making in the management of the tillage. Precision agriculture uses the yield mapping to determine the yield and spatial variability in the field. Unmanned aerial vehicles (UAV's) embedded with multispectral sensors became a potential tool for monitoring and identification of the spatial variability of yield in the field. This study had as objective to evaluate the efficiency of use of multispectral images from UAV to estimate the yield of corn (Zea mays L.). The survey was conducted in a field of 51.6 ha, under no-tillage and precision agriculture, at Boa Vista farm, located in São Martinho da Serra, Rio Grande do Sul. The soil is Neosolo and climate Cfa, according to Köppen classification. The culture used in the experiment was corn hybrid Pioneer 1630 HX, with spacing of 0.5 meters and 70.000 plants per hectare, sowing in 08/20/2014 and harvesting in 20/01/2015. The field image capture ocurred with the UAV model EI Asesor / 5 equipped with two CMOS sensors: the first, multispectral model Teracam ACD Micro, with 3 spectral bands: a band of green, red and near infrared, and the second sensor, model Flir Tau 2, with the spectral band of thermal infrared. It was generated the orthorectified mosaic multispectral images with spatial resolution of 0.7 meters and in sequence the normalized vegetation index (NDVI). Yield data were obtained through the John Deere 9670 combine, boarded with the monitor kit and harvesting sensors brand and model Trimble FMX. To evaluate the correlation of yield data with the multispectral image and the NDVI obtained with UAV was used R² Pearson, where were sampled 200 points stratified into 4 yield classes, being 50 points per class. To evaluate the correlation of corn yield with the image and NDVI index was used Pearson R², together with a visual evaluation. Yield data crossed with: the green band resulted in the linear equation with R² = 0.05, with low correlation; the infrared band near resulted in the linear equation with R² = 0.36, with an average correlation; the band Red resulted in the exponential equation with R² = 0.38, with an average correlation; the band in the thermal infrared resulted in negative linear equation with R² = 0.68, with high correlation; the NDVI resulted in the linear equation with R² = 0.75, with high correlation, and visual analysis of NDVI with the yield map also showed consistent results with statistical analysis. Therefore, was found a significant linear regression between NDVI vegetation index and corn yield, being possible to estimate corn yield potential through the UAV images, which provide monitoring of corn yield beforehand the harvest, confirming its importance for the precision agriculture. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08-30 2017-01-18 2017-01-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERNANDES, Pablo. CORN YIELD ESTIMATES (ZEA MAYS L.) THROUGH IMAGES OBTAINED BY UNMANNED AERIAL VEHICLE. 2016. 79 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2016. http://repositorio.ufsm.br/handle/1/4842 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000zc9k |
identifier_str_mv |
FERNANDES, Pablo. CORN YIELD ESTIMATES (ZEA MAYS L.) THROUGH IMAGES OBTAINED BY UNMANNED AERIAL VEHICLE. 2016. 79 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2016. ark:/26339/001300000zc9k |
url |
http://repositorio.ufsm.br/handle/1/4842 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria BR Tecnologia em Agricultura de Precisão UFSM Programa de Pós-Graduação em Agricultura de Precisão |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria BR Tecnologia em Agricultura de Precisão UFSM Programa de Pós-Graduação em Agricultura de Precisão |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172418182840320 |