Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher

Detalhes bibliográficos
Autor(a) principal: Michelotti, Vanessa Tomazetti
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000014zrw
Texto Completo: http://repositorio.ufsm.br/handle/1/14403
Resumo: The objective of this work was to evaluate genetically the individual performance characteristics of laying hens, egg quality and rates of egg production from the 19th to the 70th week of age of lines of hens of the Rhode Island Red (GG and MM) and Plymouth Rock White (SS). The data set used came from the Centro Nacional de Pesquisa de Suínos e Aves of the Empresa Brasileira de Pesquisa Agropecuária (CNPSA/EMBRAPA). The genetic values and estimates of heritabilities for each trait within each lineage were obtained through a univariate animal model. The characteristics that explain most of the genetic variation of this database were identified using Principal Component analysis, Spearman's position correlation, and later Fisher's Discriminant Functions were created. Through the principal components analysis, the quality characteristics that explained most of the genetic variation of the data were the density (D36), weight (PO36) and length x width ratio (R36) of the egg measured at the 36th week of production. The production characteristics that best represented the total production rate were: the production rates accumulated at the 50th (TA50) and 60th (TA60) weeks and the partial production rate from the 23rd to the 40th week (TP23a40). By obtaining the Fisher's discriminant functions (FDFs) for both sexes in the three lines studied, it was possible to observe that the productive characteristics (posture rates) were the most important in the composition of the Function. Higher correlations were observed between FDF1 and FDF3 (ranging from 0.97 to 0.99); followed by FDF1 and FDF2 (ranging from 0.86 to 0.94). A selection of 20% of the genetically superior animals of the last generation was performed, and the coincidence of selected animals in the different FDFs with FDF1 was presented as a percentage. It can be observed that the FDF3 function selected 100% of males in common with those selected by FDF1, in the MM and SS lines. The FDF3 presented greater coincidence in all lineages and sexes with FDF1. Thus, the variables identified as most representative are D36, PO36 and R36 along with TA60, and the Fisher discriminant function that considers all these characteristics is efficient to anticipate the selection of the animals.
id UFSM_1cd716917d816e5d75bf0ada28104a34
oai_identifier_str oai:repositorio.ufsm.br:1/14403
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de FisherGenetic evaluation of lineages of laying hens using principal components and Fisher's linear discriminant functionAnálise de variância multivariadaCorrelação de posição de SpearmanHerdabilidadeSeleçãoTaxa de produção de ovosHeritabilityMultivariate analysis of varianceRate of egg productionSelectionSpearman's rank correlationCNPQ::CIENCIAS AGRARIAS::ZOOTECNIAThe objective of this work was to evaluate genetically the individual performance characteristics of laying hens, egg quality and rates of egg production from the 19th to the 70th week of age of lines of hens of the Rhode Island Red (GG and MM) and Plymouth Rock White (SS). The data set used came from the Centro Nacional de Pesquisa de Suínos e Aves of the Empresa Brasileira de Pesquisa Agropecuária (CNPSA/EMBRAPA). The genetic values and estimates of heritabilities for each trait within each lineage were obtained through a univariate animal model. The characteristics that explain most of the genetic variation of this database were identified using Principal Component analysis, Spearman's position correlation, and later Fisher's Discriminant Functions were created. Through the principal components analysis, the quality characteristics that explained most of the genetic variation of the data were the density (D36), weight (PO36) and length x width ratio (R36) of the egg measured at the 36th week of production. The production characteristics that best represented the total production rate were: the production rates accumulated at the 50th (TA50) and 60th (TA60) weeks and the partial production rate from the 23rd to the 40th week (TP23a40). By obtaining the Fisher's discriminant functions (FDFs) for both sexes in the three lines studied, it was possible to observe that the productive characteristics (posture rates) were the most important in the composition of the Function. Higher correlations were observed between FDF1 and FDF3 (ranging from 0.97 to 0.99); followed by FDF1 and FDF2 (ranging from 0.86 to 0.94). A selection of 20% of the genetically superior animals of the last generation was performed, and the coincidence of selected animals in the different FDFs with FDF1 was presented as a percentage. It can be observed that the FDF3 function selected 100% of males in common with those selected by FDF1, in the MM and SS lines. The FDF3 presented greater coincidence in all lineages and sexes with FDF1. Thus, the variables identified as most representative are D36, PO36 and R36 along with TA60, and the Fisher discriminant function that considers all these characteristics is efficient to anticipate the selection of the animals.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO objetivo deste trabalho foi avaliar geneticamente as características de peso e reprodução de aves de postura, qualidade do ovo e taxas de produção de ovos da 19ª a 70ª semana de idade de linhagens de poedeiras das raças Rhode Island Red (GG e MM) e Plymouth Rock White (SS). Os registros foram provenientes do Centro Nacional de Pesquisa em Aves e Suínos da Empresa Brasileira de Pesquisa Agropecuária (CNPSA/EMBRAPA). Os valores genéticos e as estimativas de herdabilidades para cada característica dentro de cada linhagem foram obtidos através de um modelo animal univariado. As características que explicam a maior parte da variação genética deste banco de dados foram identificadas utilizando análise de Componentes Principais, correlação de posição de Spearman e, posteriormente, foram criadas Funções Discriminantes de Fisher. Através da análise de componentes principais, as características de qualidade que explicaram a maior parte da variação genética dos dados foram a densidade (D36), peso (PO36) e relação comprimento x largura (R36) do ovo medidas na 36ª semana de produção. As características produtivas que melhor representaram a taxa de produção total foram: as taxas de produções acumuladas nas 50ª (TA50) e 60ª (TA60) semanas e a taxa de produção parcial da 23ª a 40ª semana (TP23a40). Através da obtenção das funções discriminantes de Fisher (FDFs) para ambos os sexos nas três linhagens estudadas, foi possível observar que as características produtivas (taxas de postura) foram as mais importantes na composição da Função. Observou-se maiores correlações entre a FDF1 e FDF3 (variando de 0,97 a 0,99); seguida da FDF1 e FDF2 (variando de 0,86 a 0,94). Foi realizada seleção de 20% dos animais geneticamente superiores da última geração, e a coincidência de animais selecionados nas diferentes FDFs com a FDF1 foi apresentada em forma de porcentagem. Pode-se observar que a função FDF3 selecionou 100% de machos em comum com os selecionados pela FDF1, nas linhagens MM e SS. A FDF3 apresentou maior coincidência em todas as linhagens e sexos com a FDF1. Dessa forma, as variáveis identificadas como mais representativas são a D36, PO36 e R36 juntamente com a TA60, e a função discriminante de Fisher que considera o conjunto dessas características é eficiente para antecipar a seleção dos animais.Universidade Federal de Santa MariaBrasilZootecniaUFSMPrograma de Pós-Graduação em ZootecniaCentro de Ciências RuraisMello, Fernanda Cristina Bredahttp://lattes.cnpq.br/9702654931601290Prestes, Alan Mirandahttp://lattes.cnpq.br/5914334583507434Ferreira, Priscila Beckerhttp://lattes.cnpq.br/0361753854608875Michelotti, Vanessa Tomazetti2018-09-26T20:56:01Z2018-09-26T20:56:01Z2018-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/14403ark:/26339/0013000014zrwporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2018-09-26T20:56:01Zoai:repositorio.ufsm.br:1/14403Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2018-09-26T20:56:01Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
Genetic evaluation of lineages of laying hens using principal components and Fisher's linear discriminant function
title Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
spellingShingle Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
Michelotti, Vanessa Tomazetti
Análise de variância multivariada
Correlação de posição de Spearman
Herdabilidade
Seleção
Taxa de produção de ovos
Heritability
Multivariate analysis of variance
Rate of egg production
Selection
Spearman's rank correlation
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
title_short Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
title_full Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
title_fullStr Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
title_full_unstemmed Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
title_sort Avaliação genética de linhagens de poedeiras utilizando componentes principais e função discriminante linear de Fisher
author Michelotti, Vanessa Tomazetti
author_facet Michelotti, Vanessa Tomazetti
author_role author
dc.contributor.none.fl_str_mv Mello, Fernanda Cristina Breda
http://lattes.cnpq.br/9702654931601290
Prestes, Alan Miranda
http://lattes.cnpq.br/5914334583507434
Ferreira, Priscila Becker
http://lattes.cnpq.br/0361753854608875
dc.contributor.author.fl_str_mv Michelotti, Vanessa Tomazetti
dc.subject.por.fl_str_mv Análise de variância multivariada
Correlação de posição de Spearman
Herdabilidade
Seleção
Taxa de produção de ovos
Heritability
Multivariate analysis of variance
Rate of egg production
Selection
Spearman's rank correlation
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
topic Análise de variância multivariada
Correlação de posição de Spearman
Herdabilidade
Seleção
Taxa de produção de ovos
Heritability
Multivariate analysis of variance
Rate of egg production
Selection
Spearman's rank correlation
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
description The objective of this work was to evaluate genetically the individual performance characteristics of laying hens, egg quality and rates of egg production from the 19th to the 70th week of age of lines of hens of the Rhode Island Red (GG and MM) and Plymouth Rock White (SS). The data set used came from the Centro Nacional de Pesquisa de Suínos e Aves of the Empresa Brasileira de Pesquisa Agropecuária (CNPSA/EMBRAPA). The genetic values and estimates of heritabilities for each trait within each lineage were obtained through a univariate animal model. The characteristics that explain most of the genetic variation of this database were identified using Principal Component analysis, Spearman's position correlation, and later Fisher's Discriminant Functions were created. Through the principal components analysis, the quality characteristics that explained most of the genetic variation of the data were the density (D36), weight (PO36) and length x width ratio (R36) of the egg measured at the 36th week of production. The production characteristics that best represented the total production rate were: the production rates accumulated at the 50th (TA50) and 60th (TA60) weeks and the partial production rate from the 23rd to the 40th week (TP23a40). By obtaining the Fisher's discriminant functions (FDFs) for both sexes in the three lines studied, it was possible to observe that the productive characteristics (posture rates) were the most important in the composition of the Function. Higher correlations were observed between FDF1 and FDF3 (ranging from 0.97 to 0.99); followed by FDF1 and FDF2 (ranging from 0.86 to 0.94). A selection of 20% of the genetically superior animals of the last generation was performed, and the coincidence of selected animals in the different FDFs with FDF1 was presented as a percentage. It can be observed that the FDF3 function selected 100% of males in common with those selected by FDF1, in the MM and SS lines. The FDF3 presented greater coincidence in all lineages and sexes with FDF1. Thus, the variables identified as most representative are D36, PO36 and R36 along with TA60, and the Fisher discriminant function that considers all these characteristics is efficient to anticipate the selection of the animals.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-26T20:56:01Z
2018-09-26T20:56:01Z
2018-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/14403
dc.identifier.dark.fl_str_mv ark:/26339/0013000014zrw
url http://repositorio.ufsm.br/handle/1/14403
identifier_str_mv ark:/26339/0013000014zrw
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172450175942656