Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000ptmc |
Texto Completo: | http://repositorio.ufsm.br/handle/1/30777 |
Resumo: | Wind energy is a renewable source of vital importance and is constantly growing. In this scenario, it is imperative to carry out studies through mathematical models. However, the mathematical representation becomes excessively complex when considering the number of wind turbines present in a wind farm. This paper proposes the estimation of parameters in a wind farm equivalent model using two different approaches. The first method is responsible for performing a global search over a wide interval, thus providing an intelligent initial parameter. The values estimated by this first method are then used in the second method, which will be responsible for performing the final estimation. Simulation results show that the combination of the two methods was adequate to obtain the parameters of the wind farm equivalent model. https://doi.org/10.53316/cbgd2023.007 |
id |
UFSM_2192e449ef50ac39d2269632b31476eb |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/30777 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity MethodEstimação dos Parâmetros de um Modelo Equivalente Eólico por meio da Otimização do Mapeamento da Variância e Média e do Método de Sensibilidade da TrajetóriaWind energyMathematical modelParameter estimationCNPQ::ENGENHARIASCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAWind energy is a renewable source of vital importance and is constantly growing. In this scenario, it is imperative to carry out studies through mathematical models. However, the mathematical representation becomes excessively complex when considering the number of wind turbines present in a wind farm. This paper proposes the estimation of parameters in a wind farm equivalent model using two different approaches. The first method is responsible for performing a global search over a wide interval, thus providing an intelligent initial parameter. The values estimated by this first method are then used in the second method, which will be responsible for performing the final estimation. Simulation results show that the combination of the two methods was adequate to obtain the parameters of the wind farm equivalent model. https://doi.org/10.53316/cbgd2023.007Brasil2023-12-04T14:19:52Z2023-12-04T14:19:52Z2023-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfhttp://repositorio.ufsm.br/handle/1/30777ark:/26339/001300000ptmceng8° Congresso Brasileiro de Geração Distribuída (CBGD 2023)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessVargas, Paul Junior ZapanaSantos, Gustavo Henrique de PaulaCari, Elmer Pablo Titoreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-12-04T14:19:52Zoai:repositorio.ufsm.br:1/30777Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-12-04T14:19:52Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method Estimação dos Parâmetros de um Modelo Equivalente Eólico por meio da Otimização do Mapeamento da Variância e Média e do Método de Sensibilidade da Trajetória |
title |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method |
spellingShingle |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method Vargas, Paul Junior Zapana Wind energy Mathematical model Parameter estimation CNPQ::ENGENHARIAS CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method |
title_full |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method |
title_fullStr |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method |
title_full_unstemmed |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method |
title_sort |
Wind Equivalent Model Parameter Estimation Through Mean-Variance Mapping Optimization and Trajectory Sensitivity Method |
author |
Vargas, Paul Junior Zapana |
author_facet |
Vargas, Paul Junior Zapana Santos, Gustavo Henrique de Paula Cari, Elmer Pablo Tito |
author_role |
author |
author2 |
Santos, Gustavo Henrique de Paula Cari, Elmer Pablo Tito |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vargas, Paul Junior Zapana Santos, Gustavo Henrique de Paula Cari, Elmer Pablo Tito |
dc.subject.por.fl_str_mv |
Wind energy Mathematical model Parameter estimation CNPQ::ENGENHARIAS CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Wind energy Mathematical model Parameter estimation CNPQ::ENGENHARIAS CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
Wind energy is a renewable source of vital importance and is constantly growing. In this scenario, it is imperative to carry out studies through mathematical models. However, the mathematical representation becomes excessively complex when considering the number of wind turbines present in a wind farm. This paper proposes the estimation of parameters in a wind farm equivalent model using two different approaches. The first method is responsible for performing a global search over a wide interval, thus providing an intelligent initial parameter. The values estimated by this first method are then used in the second method, which will be responsible for performing the final estimation. Simulation results show that the combination of the two methods was adequate to obtain the parameters of the wind farm equivalent model. https://doi.org/10.53316/cbgd2023.007 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-04T14:19:52Z 2023-12-04T14:19:52Z 2023-11-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/30777 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000ptmc |
url |
http://repositorio.ufsm.br/handle/1/30777 |
identifier_str_mv |
ark:/26339/001300000ptmc |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
8° Congresso Brasileiro de Geração Distribuída (CBGD 2023) |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Brasil |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172375550885888 |