Estratégias para predição de classes de solo

Detalhes bibliográficos
Autor(a) principal: Cancian, Luciano Campos
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000m6mq
Texto Completo: http://repositorio.ufsm.br/handle/1/17887
Resumo: In order to provide information with greater agility and adequate spatial resolution to supply the demand for soil information, digital soil mapping (DSM) is an alternative to map classes and soil properties, taking advantage of the increasing availability of techniques processing and data mining. In this scenario, data that allow a clear understanding of scientific performance and relate them to the patterns of global scientific production can help in the paths to be followed by the research, and may even contribute with new public policies. The possibility of making use of previously generated information on the ground, called legacy data, can help as input information to the DSM at a reduced cost, since there is no need for new collections. As the DSM products make it possible to estimate uncertainty, a comprehensive analysis can contribute to map quality. If uncertainty is quantified and spatialized, this information can be used to improve sampling and optimize information generation. Thus, the objectives of this work were (1) to characterize the scientific production in digital mapping of soils in Brazil and in the world, from 1996 to 2017, in the Scopus and Web of Science databases; and (2) evaluate additional data collection techniques to improve soil class predictions using legacy data. For this, two studies were carried out. In the first, we searched for terms related to MDS in the databases, including searches for terms in the titles, abstracts, and keywords of articles. From this, a set of bibliometric indexes of the results were generated using the Bibliometrix package in the R environment. In the second study, a soil class map was generated based on environmental covariates using legacy data in an area of 13000 km² of the central region of Rio Grande do Sul State, which is among the priority areas of PronaSolos. The maps were evaluated by cross-validation and external validation, in addition to uncertainty maps expressing the areas with greater confusion of the model. In addition, strategies were tested to obtain additional points to the calibration set based on legacy maps and guided-uncertainty resampling. Study 1 demonstrated that, in the general context, the increasing number of articles in DSM was published for the most part in the Geoderma journal. Among the 10 journals most published articles, the Revista Brasileira de Ciência do Solo is the only open access journal. Although there are countries at the forefront of DSM, such as the United States and Australia, Brazil's position in the number of articles and authors cannot be overlooked, showing the importance of the country's participation in DSM research. Study 2 resulted in a map of soil classes, generated only legacy data, with an accuracy of 0.49 in external validation and a general uncertainty of 0.84. A hybrid set using legacy data from different sources was able to improve accuracy to 0.55 and reduce uncertainty to 0.77. However, while legacy map data has brought benefits to the model, they have shown inconsistencies due to its resolution. The uncertainty-guided resampling, by the improvement brought to the model using a small amount of data, was the strategy that demonstrated the greatest potential. Our data demonstrate that DSM is a promising technique and can be used as a methodology in the Programa Nacional de Solos (PronaSolos).
id UFSM_23bdab3ed33d0ba0851f7c19f0009212
oai_identifier_str oai:repositorio.ufsm.br:1/17887
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Estratégias para predição de classes de soloStrategies for soil classes predictionMapeamento digital de solosAnálise bibliométricaDados legadosIncertezaPedometriaDigital soil mappingBibliometric analysisLegacy dataMap uncertaintyPedometryCNPQ::CIENCIAS AGRARIAS::AGRONOMIAIn order to provide information with greater agility and adequate spatial resolution to supply the demand for soil information, digital soil mapping (DSM) is an alternative to map classes and soil properties, taking advantage of the increasing availability of techniques processing and data mining. In this scenario, data that allow a clear understanding of scientific performance and relate them to the patterns of global scientific production can help in the paths to be followed by the research, and may even contribute with new public policies. The possibility of making use of previously generated information on the ground, called legacy data, can help as input information to the DSM at a reduced cost, since there is no need for new collections. As the DSM products make it possible to estimate uncertainty, a comprehensive analysis can contribute to map quality. If uncertainty is quantified and spatialized, this information can be used to improve sampling and optimize information generation. Thus, the objectives of this work were (1) to characterize the scientific production in digital mapping of soils in Brazil and in the world, from 1996 to 2017, in the Scopus and Web of Science databases; and (2) evaluate additional data collection techniques to improve soil class predictions using legacy data. For this, two studies were carried out. In the first, we searched for terms related to MDS in the databases, including searches for terms in the titles, abstracts, and keywords of articles. From this, a set of bibliometric indexes of the results were generated using the Bibliometrix package in the R environment. In the second study, a soil class map was generated based on environmental covariates using legacy data in an area of 13000 km² of the central region of Rio Grande do Sul State, which is among the priority areas of PronaSolos. The maps were evaluated by cross-validation and external validation, in addition to uncertainty maps expressing the areas with greater confusion of the model. In addition, strategies were tested to obtain additional points to the calibration set based on legacy maps and guided-uncertainty resampling. Study 1 demonstrated that, in the general context, the increasing number of articles in DSM was published for the most part in the Geoderma journal. Among the 10 journals most published articles, the Revista Brasileira de Ciência do Solo is the only open access journal. Although there are countries at the forefront of DSM, such as the United States and Australia, Brazil's position in the number of articles and authors cannot be overlooked, showing the importance of the country's participation in DSM research. Study 2 resulted in a map of soil classes, generated only legacy data, with an accuracy of 0.49 in external validation and a general uncertainty of 0.84. A hybrid set using legacy data from different sources was able to improve accuracy to 0.55 and reduce uncertainty to 0.77. However, while legacy map data has brought benefits to the model, they have shown inconsistencies due to its resolution. The uncertainty-guided resampling, by the improvement brought to the model using a small amount of data, was the strategy that demonstrated the greatest potential. Our data demonstrate that DSM is a promising technique and can be used as a methodology in the Programa Nacional de Solos (PronaSolos).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESCom o intuito de disponibilizar informações com maior agilidade e resolução espacial adequada para suprir a demanda por informações sobre o solo, o mapeamento digital de solos (MDS) é uma alternativa para mapear classes e propriedades de solo, usufruindo da disponibilidade cada vez maior de técnicas processamento e mineração de dados. Nesse cenário, dados que permitam uma compreensão clara do desempenho científico e as relacionam com os padrões da produção científica global podem auxiliar nos caminhos a serem seguidos pela pesquisa, podendo contribuir inclusive com novas políticas públicas. A possibilidade de se fazer uso de informações previamente geradas sobre o solo, denominadas de dados legados, pode auxiliar com informações de entrada ao MDS a um custo reduzido, visto que não há necessidade de novas coletas. Como os produtos do MDS possibilitam a estimativa da incerteza, e uma análise abrangente pode contribuir para a qualidade dos mapas. Se quantificada e espacializada a incerteza, essas informações podem ser usadas para aprimorar a amostragem e otimizar a geração de informações. Dessa forma, os objetivos deste trabalho foram (1) caracterizar a produção científica em mapeamento digital de solos no Brasil e no mundo, no período de 1996 a 2017, nas bases de dados Scopus e Web of Science; e (2) avaliar técnicas de obtenção de dados adicionais para melhorar as predições de classes de solo com uso de dados legados. Para isso, foram realizados dois estudos. No primeiro, foram pesquisados de termos referentes ao MDS nas bases de dados, incluindo pesquisas de termos nos títulos, resumos e palavras-chave dos artigos. A partir disso, foi gerado um conjunto de índices bibliométricos dos resultados utilizando o pacote Bibliometrix em ambiente R. No segundo estudo, um mapa de classes de solo foi gerado com base em covariáveis ambientais, utilizando dados legados, em uma área de 13000 km² da região Central do Estado do Rio Grande do Sul, que está entre as áreas prioritárias do PronaSolos. Os mapas foram avaliados por validação cruzada e validação externa, além de mapas de incerteza expressarem as áreas com maior confusão do modelo. Adicionalmente, foram testadas estratégias para obtenção de pontos adicionais ao conjunto de calibração com base em mapas legados e reamostragem guiada na incerteza. O estudo 1 demonstrou que, no contexto geral, o crescente número de artigos em MDS foi publicado em sua maior parte na revista Geoderma. Entre os 10 com mais artigos publicados, a Revista Brasileira de Ciência do Solo é o único periódico de acesso aberto. Embora existam países na vanguarda do MDS, como Estados Unidos e Austrália, a posição do Brasil no número de artigos e autores não pode ser menosprezada, mostrando a importância da participação do país na pesquisa em MDS. O estudo 2 resultou em um mapa de classes de solo, gerado apenas com os dados legados, com acurácia de 0,49 na validação externa e incerteza geral de 0,84. Um conjunto híbrido, utilizando os dados legados de diferentes fontes foi capaz de melhorar acurácia para 0,55 e reduzir a incerteza para 0,77. Contudo, embora os dados do mapa legado terem trazido benefícios ao modelo, demonstraram inconsistências devido a sua escala. A reamostragem guiada pela incerteza, pela melhoria trazida ao modelo fazendo uso de uma pequena quantidade de dados, foi a estratégia que demonstrou o maior potencial. Nossos dados demonstram que o MDS é uma técnica promissora, podendo ser utilizado como metodologia no Programa Nacional de Solos (PronaSolos).Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Ciência do SoloCentro de Ciências RuraisDalmolin, Ricardo Simão Dinizhttp://lattes.cnpq.br/3735884911693854Caten, Alexandre tenhttp://lattes.cnpq.br/4065267714747712Filho, Elpidio Inacio Fernandeshttp://lattes.cnpq.br/9848935150180973Pedron, Fabrício de Araújohttp://lattes.cnpq.br/6868334304493274Bueno, Jean Michel Mourahttp://lattes.cnpq.br/6826707506303568Schenato, Ricardo Bergamohttp://lattes.cnpq.br/4043277579467500Cancian, Luciano Campos2019-08-12T11:55:06Z2019-08-12T11:55:06Z2019-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/17887ark:/26339/001300000m6mqporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-08-13T06:02:48Zoai:repositorio.ufsm.br:1/17887Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-08-13T06:02:48Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Estratégias para predição de classes de solo
Strategies for soil classes prediction
title Estratégias para predição de classes de solo
spellingShingle Estratégias para predição de classes de solo
Cancian, Luciano Campos
Mapeamento digital de solos
Análise bibliométrica
Dados legados
Incerteza
Pedometria
Digital soil mapping
Bibliometric analysis
Legacy data
Map uncertainty
Pedometry
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Estratégias para predição de classes de solo
title_full Estratégias para predição de classes de solo
title_fullStr Estratégias para predição de classes de solo
title_full_unstemmed Estratégias para predição de classes de solo
title_sort Estratégias para predição de classes de solo
author Cancian, Luciano Campos
author_facet Cancian, Luciano Campos
author_role author
dc.contributor.none.fl_str_mv Dalmolin, Ricardo Simão Diniz
http://lattes.cnpq.br/3735884911693854
Caten, Alexandre ten
http://lattes.cnpq.br/4065267714747712
Filho, Elpidio Inacio Fernandes
http://lattes.cnpq.br/9848935150180973
Pedron, Fabrício de Araújo
http://lattes.cnpq.br/6868334304493274
Bueno, Jean Michel Moura
http://lattes.cnpq.br/6826707506303568
Schenato, Ricardo Bergamo
http://lattes.cnpq.br/4043277579467500
dc.contributor.author.fl_str_mv Cancian, Luciano Campos
dc.subject.por.fl_str_mv Mapeamento digital de solos
Análise bibliométrica
Dados legados
Incerteza
Pedometria
Digital soil mapping
Bibliometric analysis
Legacy data
Map uncertainty
Pedometry
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Mapeamento digital de solos
Análise bibliométrica
Dados legados
Incerteza
Pedometria
Digital soil mapping
Bibliometric analysis
Legacy data
Map uncertainty
Pedometry
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description In order to provide information with greater agility and adequate spatial resolution to supply the demand for soil information, digital soil mapping (DSM) is an alternative to map classes and soil properties, taking advantage of the increasing availability of techniques processing and data mining. In this scenario, data that allow a clear understanding of scientific performance and relate them to the patterns of global scientific production can help in the paths to be followed by the research, and may even contribute with new public policies. The possibility of making use of previously generated information on the ground, called legacy data, can help as input information to the DSM at a reduced cost, since there is no need for new collections. As the DSM products make it possible to estimate uncertainty, a comprehensive analysis can contribute to map quality. If uncertainty is quantified and spatialized, this information can be used to improve sampling and optimize information generation. Thus, the objectives of this work were (1) to characterize the scientific production in digital mapping of soils in Brazil and in the world, from 1996 to 2017, in the Scopus and Web of Science databases; and (2) evaluate additional data collection techniques to improve soil class predictions using legacy data. For this, two studies were carried out. In the first, we searched for terms related to MDS in the databases, including searches for terms in the titles, abstracts, and keywords of articles. From this, a set of bibliometric indexes of the results were generated using the Bibliometrix package in the R environment. In the second study, a soil class map was generated based on environmental covariates using legacy data in an area of 13000 km² of the central region of Rio Grande do Sul State, which is among the priority areas of PronaSolos. The maps were evaluated by cross-validation and external validation, in addition to uncertainty maps expressing the areas with greater confusion of the model. In addition, strategies were tested to obtain additional points to the calibration set based on legacy maps and guided-uncertainty resampling. Study 1 demonstrated that, in the general context, the increasing number of articles in DSM was published for the most part in the Geoderma journal. Among the 10 journals most published articles, the Revista Brasileira de Ciência do Solo is the only open access journal. Although there are countries at the forefront of DSM, such as the United States and Australia, Brazil's position in the number of articles and authors cannot be overlooked, showing the importance of the country's participation in DSM research. Study 2 resulted in a map of soil classes, generated only legacy data, with an accuracy of 0.49 in external validation and a general uncertainty of 0.84. A hybrid set using legacy data from different sources was able to improve accuracy to 0.55 and reduce uncertainty to 0.77. However, while legacy map data has brought benefits to the model, they have shown inconsistencies due to its resolution. The uncertainty-guided resampling, by the improvement brought to the model using a small amount of data, was the strategy that demonstrated the greatest potential. Our data demonstrate that DSM is a promising technique and can be used as a methodology in the Programa Nacional de Solos (PronaSolos).
publishDate 2019
dc.date.none.fl_str_mv 2019-08-12T11:55:06Z
2019-08-12T11:55:06Z
2019-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/17887
dc.identifier.dark.fl_str_mv ark:/26339/001300000m6mq
url http://repositorio.ufsm.br/handle/1/17887
identifier_str_mv ark:/26339/001300000m6mq
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Ciência do Solo
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172360514306048