Estratégias para predição de classes de solo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000m6mq |
Texto Completo: | http://repositorio.ufsm.br/handle/1/17887 |
Resumo: | In order to provide information with greater agility and adequate spatial resolution to supply the demand for soil information, digital soil mapping (DSM) is an alternative to map classes and soil properties, taking advantage of the increasing availability of techniques processing and data mining. In this scenario, data that allow a clear understanding of scientific performance and relate them to the patterns of global scientific production can help in the paths to be followed by the research, and may even contribute with new public policies. The possibility of making use of previously generated information on the ground, called legacy data, can help as input information to the DSM at a reduced cost, since there is no need for new collections. As the DSM products make it possible to estimate uncertainty, a comprehensive analysis can contribute to map quality. If uncertainty is quantified and spatialized, this information can be used to improve sampling and optimize information generation. Thus, the objectives of this work were (1) to characterize the scientific production in digital mapping of soils in Brazil and in the world, from 1996 to 2017, in the Scopus and Web of Science databases; and (2) evaluate additional data collection techniques to improve soil class predictions using legacy data. For this, two studies were carried out. In the first, we searched for terms related to MDS in the databases, including searches for terms in the titles, abstracts, and keywords of articles. From this, a set of bibliometric indexes of the results were generated using the Bibliometrix package in the R environment. In the second study, a soil class map was generated based on environmental covariates using legacy data in an area of 13000 km² of the central region of Rio Grande do Sul State, which is among the priority areas of PronaSolos. The maps were evaluated by cross-validation and external validation, in addition to uncertainty maps expressing the areas with greater confusion of the model. In addition, strategies were tested to obtain additional points to the calibration set based on legacy maps and guided-uncertainty resampling. Study 1 demonstrated that, in the general context, the increasing number of articles in DSM was published for the most part in the Geoderma journal. Among the 10 journals most published articles, the Revista Brasileira de Ciência do Solo is the only open access journal. Although there are countries at the forefront of DSM, such as the United States and Australia, Brazil's position in the number of articles and authors cannot be overlooked, showing the importance of the country's participation in DSM research. Study 2 resulted in a map of soil classes, generated only legacy data, with an accuracy of 0.49 in external validation and a general uncertainty of 0.84. A hybrid set using legacy data from different sources was able to improve accuracy to 0.55 and reduce uncertainty to 0.77. However, while legacy map data has brought benefits to the model, they have shown inconsistencies due to its resolution. The uncertainty-guided resampling, by the improvement brought to the model using a small amount of data, was the strategy that demonstrated the greatest potential. Our data demonstrate that DSM is a promising technique and can be used as a methodology in the Programa Nacional de Solos (PronaSolos). |
id |
UFSM_23bdab3ed33d0ba0851f7c19f0009212 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/17887 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Estratégias para predição de classes de soloStrategies for soil classes predictionMapeamento digital de solosAnálise bibliométricaDados legadosIncertezaPedometriaDigital soil mappingBibliometric analysisLegacy dataMap uncertaintyPedometryCNPQ::CIENCIAS AGRARIAS::AGRONOMIAIn order to provide information with greater agility and adequate spatial resolution to supply the demand for soil information, digital soil mapping (DSM) is an alternative to map classes and soil properties, taking advantage of the increasing availability of techniques processing and data mining. In this scenario, data that allow a clear understanding of scientific performance and relate them to the patterns of global scientific production can help in the paths to be followed by the research, and may even contribute with new public policies. The possibility of making use of previously generated information on the ground, called legacy data, can help as input information to the DSM at a reduced cost, since there is no need for new collections. As the DSM products make it possible to estimate uncertainty, a comprehensive analysis can contribute to map quality. If uncertainty is quantified and spatialized, this information can be used to improve sampling and optimize information generation. Thus, the objectives of this work were (1) to characterize the scientific production in digital mapping of soils in Brazil and in the world, from 1996 to 2017, in the Scopus and Web of Science databases; and (2) evaluate additional data collection techniques to improve soil class predictions using legacy data. For this, two studies were carried out. In the first, we searched for terms related to MDS in the databases, including searches for terms in the titles, abstracts, and keywords of articles. From this, a set of bibliometric indexes of the results were generated using the Bibliometrix package in the R environment. In the second study, a soil class map was generated based on environmental covariates using legacy data in an area of 13000 km² of the central region of Rio Grande do Sul State, which is among the priority areas of PronaSolos. The maps were evaluated by cross-validation and external validation, in addition to uncertainty maps expressing the areas with greater confusion of the model. In addition, strategies were tested to obtain additional points to the calibration set based on legacy maps and guided-uncertainty resampling. Study 1 demonstrated that, in the general context, the increasing number of articles in DSM was published for the most part in the Geoderma journal. Among the 10 journals most published articles, the Revista Brasileira de Ciência do Solo is the only open access journal. Although there are countries at the forefront of DSM, such as the United States and Australia, Brazil's position in the number of articles and authors cannot be overlooked, showing the importance of the country's participation in DSM research. Study 2 resulted in a map of soil classes, generated only legacy data, with an accuracy of 0.49 in external validation and a general uncertainty of 0.84. A hybrid set using legacy data from different sources was able to improve accuracy to 0.55 and reduce uncertainty to 0.77. However, while legacy map data has brought benefits to the model, they have shown inconsistencies due to its resolution. The uncertainty-guided resampling, by the improvement brought to the model using a small amount of data, was the strategy that demonstrated the greatest potential. Our data demonstrate that DSM is a promising technique and can be used as a methodology in the Programa Nacional de Solos (PronaSolos).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESCom o intuito de disponibilizar informações com maior agilidade e resolução espacial adequada para suprir a demanda por informações sobre o solo, o mapeamento digital de solos (MDS) é uma alternativa para mapear classes e propriedades de solo, usufruindo da disponibilidade cada vez maior de técnicas processamento e mineração de dados. Nesse cenário, dados que permitam uma compreensão clara do desempenho científico e as relacionam com os padrões da produção científica global podem auxiliar nos caminhos a serem seguidos pela pesquisa, podendo contribuir inclusive com novas políticas públicas. A possibilidade de se fazer uso de informações previamente geradas sobre o solo, denominadas de dados legados, pode auxiliar com informações de entrada ao MDS a um custo reduzido, visto que não há necessidade de novas coletas. Como os produtos do MDS possibilitam a estimativa da incerteza, e uma análise abrangente pode contribuir para a qualidade dos mapas. Se quantificada e espacializada a incerteza, essas informações podem ser usadas para aprimorar a amostragem e otimizar a geração de informações. Dessa forma, os objetivos deste trabalho foram (1) caracterizar a produção científica em mapeamento digital de solos no Brasil e no mundo, no período de 1996 a 2017, nas bases de dados Scopus e Web of Science; e (2) avaliar técnicas de obtenção de dados adicionais para melhorar as predições de classes de solo com uso de dados legados. Para isso, foram realizados dois estudos. No primeiro, foram pesquisados de termos referentes ao MDS nas bases de dados, incluindo pesquisas de termos nos títulos, resumos e palavras-chave dos artigos. A partir disso, foi gerado um conjunto de índices bibliométricos dos resultados utilizando o pacote Bibliometrix em ambiente R. No segundo estudo, um mapa de classes de solo foi gerado com base em covariáveis ambientais, utilizando dados legados, em uma área de 13000 km² da região Central do Estado do Rio Grande do Sul, que está entre as áreas prioritárias do PronaSolos. Os mapas foram avaliados por validação cruzada e validação externa, além de mapas de incerteza expressarem as áreas com maior confusão do modelo. Adicionalmente, foram testadas estratégias para obtenção de pontos adicionais ao conjunto de calibração com base em mapas legados e reamostragem guiada na incerteza. O estudo 1 demonstrou que, no contexto geral, o crescente número de artigos em MDS foi publicado em sua maior parte na revista Geoderma. Entre os 10 com mais artigos publicados, a Revista Brasileira de Ciência do Solo é o único periódico de acesso aberto. Embora existam países na vanguarda do MDS, como Estados Unidos e Austrália, a posição do Brasil no número de artigos e autores não pode ser menosprezada, mostrando a importância da participação do país na pesquisa em MDS. O estudo 2 resultou em um mapa de classes de solo, gerado apenas com os dados legados, com acurácia de 0,49 na validação externa e incerteza geral de 0,84. Um conjunto híbrido, utilizando os dados legados de diferentes fontes foi capaz de melhorar acurácia para 0,55 e reduzir a incerteza para 0,77. Contudo, embora os dados do mapa legado terem trazido benefícios ao modelo, demonstraram inconsistências devido a sua escala. A reamostragem guiada pela incerteza, pela melhoria trazida ao modelo fazendo uso de uma pequena quantidade de dados, foi a estratégia que demonstrou o maior potencial. Nossos dados demonstram que o MDS é uma técnica promissora, podendo ser utilizado como metodologia no Programa Nacional de Solos (PronaSolos).Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Ciência do SoloCentro de Ciências RuraisDalmolin, Ricardo Simão Dinizhttp://lattes.cnpq.br/3735884911693854Caten, Alexandre tenhttp://lattes.cnpq.br/4065267714747712Filho, Elpidio Inacio Fernandeshttp://lattes.cnpq.br/9848935150180973Pedron, Fabrício de Araújohttp://lattes.cnpq.br/6868334304493274Bueno, Jean Michel Mourahttp://lattes.cnpq.br/6826707506303568Schenato, Ricardo Bergamohttp://lattes.cnpq.br/4043277579467500Cancian, Luciano Campos2019-08-12T11:55:06Z2019-08-12T11:55:06Z2019-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/17887ark:/26339/001300000m6mqporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-08-13T06:02:48Zoai:repositorio.ufsm.br:1/17887Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-08-13T06:02:48Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Estratégias para predição de classes de solo Strategies for soil classes prediction |
title |
Estratégias para predição de classes de solo |
spellingShingle |
Estratégias para predição de classes de solo Cancian, Luciano Campos Mapeamento digital de solos Análise bibliométrica Dados legados Incerteza Pedometria Digital soil mapping Bibliometric analysis Legacy data Map uncertainty Pedometry CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Estratégias para predição de classes de solo |
title_full |
Estratégias para predição de classes de solo |
title_fullStr |
Estratégias para predição de classes de solo |
title_full_unstemmed |
Estratégias para predição de classes de solo |
title_sort |
Estratégias para predição de classes de solo |
author |
Cancian, Luciano Campos |
author_facet |
Cancian, Luciano Campos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dalmolin, Ricardo Simão Diniz http://lattes.cnpq.br/3735884911693854 Caten, Alexandre ten http://lattes.cnpq.br/4065267714747712 Filho, Elpidio Inacio Fernandes http://lattes.cnpq.br/9848935150180973 Pedron, Fabrício de Araújo http://lattes.cnpq.br/6868334304493274 Bueno, Jean Michel Moura http://lattes.cnpq.br/6826707506303568 Schenato, Ricardo Bergamo http://lattes.cnpq.br/4043277579467500 |
dc.contributor.author.fl_str_mv |
Cancian, Luciano Campos |
dc.subject.por.fl_str_mv |
Mapeamento digital de solos Análise bibliométrica Dados legados Incerteza Pedometria Digital soil mapping Bibliometric analysis Legacy data Map uncertainty Pedometry CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Mapeamento digital de solos Análise bibliométrica Dados legados Incerteza Pedometria Digital soil mapping Bibliometric analysis Legacy data Map uncertainty Pedometry CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
In order to provide information with greater agility and adequate spatial resolution to supply the demand for soil information, digital soil mapping (DSM) is an alternative to map classes and soil properties, taking advantage of the increasing availability of techniques processing and data mining. In this scenario, data that allow a clear understanding of scientific performance and relate them to the patterns of global scientific production can help in the paths to be followed by the research, and may even contribute with new public policies. The possibility of making use of previously generated information on the ground, called legacy data, can help as input information to the DSM at a reduced cost, since there is no need for new collections. As the DSM products make it possible to estimate uncertainty, a comprehensive analysis can contribute to map quality. If uncertainty is quantified and spatialized, this information can be used to improve sampling and optimize information generation. Thus, the objectives of this work were (1) to characterize the scientific production in digital mapping of soils in Brazil and in the world, from 1996 to 2017, in the Scopus and Web of Science databases; and (2) evaluate additional data collection techniques to improve soil class predictions using legacy data. For this, two studies were carried out. In the first, we searched for terms related to MDS in the databases, including searches for terms in the titles, abstracts, and keywords of articles. From this, a set of bibliometric indexes of the results were generated using the Bibliometrix package in the R environment. In the second study, a soil class map was generated based on environmental covariates using legacy data in an area of 13000 km² of the central region of Rio Grande do Sul State, which is among the priority areas of PronaSolos. The maps were evaluated by cross-validation and external validation, in addition to uncertainty maps expressing the areas with greater confusion of the model. In addition, strategies were tested to obtain additional points to the calibration set based on legacy maps and guided-uncertainty resampling. Study 1 demonstrated that, in the general context, the increasing number of articles in DSM was published for the most part in the Geoderma journal. Among the 10 journals most published articles, the Revista Brasileira de Ciência do Solo is the only open access journal. Although there are countries at the forefront of DSM, such as the United States and Australia, Brazil's position in the number of articles and authors cannot be overlooked, showing the importance of the country's participation in DSM research. Study 2 resulted in a map of soil classes, generated only legacy data, with an accuracy of 0.49 in external validation and a general uncertainty of 0.84. A hybrid set using legacy data from different sources was able to improve accuracy to 0.55 and reduce uncertainty to 0.77. However, while legacy map data has brought benefits to the model, they have shown inconsistencies due to its resolution. The uncertainty-guided resampling, by the improvement brought to the model using a small amount of data, was the strategy that demonstrated the greatest potential. Our data demonstrate that DSM is a promising technique and can be used as a methodology in the Programa Nacional de Solos (PronaSolos). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-12T11:55:06Z 2019-08-12T11:55:06Z 2019-02-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/17887 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000m6mq |
url |
http://repositorio.ufsm.br/handle/1/17887 |
identifier_str_mv |
ark:/26339/001300000m6mq |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Ciência do Solo Centro de Ciências Rurais |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Ciência do Solo Centro de Ciências Rurais |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172360514306048 |