Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios

Detalhes bibliográficos
Autor(a) principal: Colussi, Marcio Luiz
Data de Publicação: 2012
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000009v6f
Texto Completo: http://repositorio.ufsm.br/handle/1/3910
Resumo: Using the formalism of Density Functional Theory with spin polarization and the Generalized Gradient Approximation for exchange and correlation term, we studied the stability and electronic properties of substitutional impurities of C, Si and Ge in GaN, AlN and InN nanowires and the variation of the band offset with the diameter variation in AlN/GaN nanowires heterojunctions. For the study of substitutional impurities we use AlN, GaN and InN nanowires in the wurtzite phase with diameter of 14.47 Å, 14.7 Å and 16.5 Å, respectively. For the study of variation of the band offset with the diameter of the nanostructure, we use nanowires in the wurtzite phase with a mean diameter ranging from 0.99 nm to 2.7 nm and the zinc blende phase with an average diameter ranging from 0.75 nm to 2.1 nm. The electronic structure calculations show that of GaN, AlN and InN nanowires are semiconductors with direct band gap at point Γ. To study the substitutional impurities, we consider that the impurity can occupy the cation or anion sites in non-equivalent positions that are distributed from the center to the surface of the nanowire. For the C impurities, in GaN nanowires, we find that when the C atom is substituted in the N site, it will be uniformly distributed along the diameter of the nanowire. When substituted at the Ga site, it will be preferably find on the surface of the nanowire. In this case, the formation energy of CGa is almost identical to the CN, thus can occur formation of the auto-compensed CN-CGa pair. In AlN nanowires, when the C atom occupying the N site, it is also observed an almost uniform distribution along the diameter of the nanowire with a small preference (less energy formation) to the surface sites. Since the formation energy of the CN is lower than CAl in all regions of the nanowires, taking thus more likely to form CN. For InN nanowires, in the center sites, the formation energy of the CN and CIn is very similar, and the CN will have a uniform distribution along the diameter, but on the surface of the CIn is more stable and band structure show that this configuration has shallow donor levels. For Ge substitutional impurities in GaN nanowires, we observed that the center of the nanowire, the Ge atom is more likely to be found located in the Ga site, but in surface to find the most likely of N site, this being the most stable configuration. For AlN nanowires, the center of nanowire is possible to find the Ge atom at the N or Al sites, as the formation energy is practically the same. On the surface the more likely it is to find the Ge atom of the N site, which also is the most stable configuration. As for InN nanowires, the Ge atom will be found preferably at the In site with uniform distribution along the diameter of the nanowire. Analyzing the band structure of GeIn observed shallow donor levels. For the Si substitutional impurities, we obtain that in GaN and InN nanowires of the most stable configuration, the Si atom is to be found at the cation (Ga and In) sites in the central sites of the nanowire and analyzing the band structure of SiGa and SiIn, we also observed shalow donor levels. However, for AlN nanowires in the centerof the nanowire is greater the probability of finding the Si atom at the Al site, but the surface is greater the probability of finding the Si atom at the N site which is the most stable configuration. Finally, we analyze the variation of the band offset to the change in diameter of the nanowires forming the heterostructure. We consider heterostructure on yhe wurtzite and zinc blende phases, therefore during the synthesis the two phases are obtained. We found that the result is similar for the two phases and the extent that the diameter increases the value of the band offset also increases, tending to the value obtained for the bulk.
id UFSM_34e2d541fca942fd19921e857c3a9b32
oai_identifier_str oai:repositorio.ufsm.br:1/3910
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípiosTheoretical investigation of possible application of aln, gan and inn nanowires in the electonics: first principles studyNanofiosHeteroestruturas de nanofiosImpurezas substitucionaisNanowiresNanowire heterostructuresSubstitutional impuritiesCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAUsing the formalism of Density Functional Theory with spin polarization and the Generalized Gradient Approximation for exchange and correlation term, we studied the stability and electronic properties of substitutional impurities of C, Si and Ge in GaN, AlN and InN nanowires and the variation of the band offset with the diameter variation in AlN/GaN nanowires heterojunctions. For the study of substitutional impurities we use AlN, GaN and InN nanowires in the wurtzite phase with diameter of 14.47 Å, 14.7 Å and 16.5 Å, respectively. For the study of variation of the band offset with the diameter of the nanostructure, we use nanowires in the wurtzite phase with a mean diameter ranging from 0.99 nm to 2.7 nm and the zinc blende phase with an average diameter ranging from 0.75 nm to 2.1 nm. The electronic structure calculations show that of GaN, AlN and InN nanowires are semiconductors with direct band gap at point Γ. To study the substitutional impurities, we consider that the impurity can occupy the cation or anion sites in non-equivalent positions that are distributed from the center to the surface of the nanowire. For the C impurities, in GaN nanowires, we find that when the C atom is substituted in the N site, it will be uniformly distributed along the diameter of the nanowire. When substituted at the Ga site, it will be preferably find on the surface of the nanowire. In this case, the formation energy of CGa is almost identical to the CN, thus can occur formation of the auto-compensed CN-CGa pair. In AlN nanowires, when the C atom occupying the N site, it is also observed an almost uniform distribution along the diameter of the nanowire with a small preference (less energy formation) to the surface sites. Since the formation energy of the CN is lower than CAl in all regions of the nanowires, taking thus more likely to form CN. For InN nanowires, in the center sites, the formation energy of the CN and CIn is very similar, and the CN will have a uniform distribution along the diameter, but on the surface of the CIn is more stable and band structure show that this configuration has shallow donor levels. For Ge substitutional impurities in GaN nanowires, we observed that the center of the nanowire, the Ge atom is more likely to be found located in the Ga site, but in surface to find the most likely of N site, this being the most stable configuration. For AlN nanowires, the center of nanowire is possible to find the Ge atom at the N or Al sites, as the formation energy is practically the same. On the surface the more likely it is to find the Ge atom of the N site, which also is the most stable configuration. As for InN nanowires, the Ge atom will be found preferably at the In site with uniform distribution along the diameter of the nanowire. Analyzing the band structure of GeIn observed shallow donor levels. For the Si substitutional impurities, we obtain that in GaN and InN nanowires of the most stable configuration, the Si atom is to be found at the cation (Ga and In) sites in the central sites of the nanowire and analyzing the band structure of SiGa and SiIn, we also observed shalow donor levels. However, for AlN nanowires in the centerof the nanowire is greater the probability of finding the Si atom at the Al site, but the surface is greater the probability of finding the Si atom at the N site which is the most stable configuration. Finally, we analyze the variation of the band offset to the change in diameter of the nanowires forming the heterostructure. We consider heterostructure on yhe wurtzite and zinc blende phases, therefore during the synthesis the two phases are obtained. We found that the result is similar for the two phases and the extent that the diameter increases the value of the band offset also increases, tending to the value obtained for the bulk.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUsando o formalismo da Teoria do Funcional da Densidade com polarização de spin e a aproximação do gradiente generalizado para o termo de troca e correlação, estudamos a estabilidade e as propriedades eletrônicas de impurezas substitucionais de C, Si e Ge em nanofios de GaN, AlN e InN e a variação do band offset com o diâmetro em heteroestruturas da nanofios AlN/GaN. Para o estudo de impurezas substitucionais utilizamos nanofios de AlN, GaN e InN na fase da wurtzita e com diâmetros de 14,47 Å, 14,7 Å e 16,5 Å, respectivamente. Já para o estudo da variação do band offset com o diâmetro da nanoestrutura, utilizamos nanofios que formam a heteroestrutura na fase wurtzita com diâmetro médio variando 0,99 nm até 2,7 nm e na fase blenda de zinco com diâmetro médio variando de 0,75 nm até 2,1 nm. Os cálculos de estrutura eletrônica apresentam que os nanofios de AlN, GaN e InN são semicondutores com gap direto no ponto Γ. Para o estudo das impurezas substitucionais, consideramos que a impureza pode ocupar o sítio do cátion ou do aniôn, em posições não equivalentes que estão distribuídas do centro até a superfície do nanofio. Para a impureza de C, em nanofios de GaN, obtemos que, quando o átomo de C for substituído no sítio do N, o mesmo vai estar distribuído uniformemente ao longo do diâmetro do nanofio. Já quando substituído no sítio do gálio, o mesmo vai ser encontrado preferencialmente na superfície do nanofio, sendo que, na superfície do nanofio a energia do formação do CGa é praticamente a mesma do CN, assim pode ocorre a formação de pares autocompensados CN-CGa. Em nanofios de AlN, quando o átomo de C ocupar o sítio do N, também vai ter uma distribuição quase uniforme ao longo do diâmetro do nanofio com uma pequena preferência (menor energia de formação) para os sítios da superfície. Sendo que a energia de formação do CN é menor que do CAl em todas as regiões do nanofios, tendo assim, probabilidade maior de formar CN. Para nanofios de InN, nos sítios do centro, a energia de formação do CN e CIn é muito próxima, sendo que o CN vai ter distribuição uniforme ao longo do diâmetro, mas na superfície o CIn ser torna mais estável e a estrutura de bandas mostra que esta configuração apresenta níveis doadores rasos. Para impurezas substitucionais de Ge, em nanofios de GaN, observamos que no centro do nanofio, o átomo de Ge tem uma probabilidade maior de ser encontrado no síto do Ga, mas nos sítios da superfície a probabilidade é maior de encontrar no sítio do N, sendo essa a configuração mais estável. Para nanofios de AlN, no centro do nanofio, é possível encontrar o átomo de Ge no sítio do N ou Al, já que a energia de formação é práticamente a mesma. Na superfície a probabilidade maior é de encontrar o átomo de Ge no sítio do N, sendo, também, esta a configuração mais estável. Já para nanofios de InN, o átomo de Ge vai ser encontrado preferencialmente no sítio do In com distribuição uniforme ao longo do diâmetro do nanofio. Analisando a estrutura de bandas do GeIn observamos níveis doadores rasos. Para a impureza substitucional de Si, obtemos que em nanofios de GaN e InN a configuração mais estável, é o Si ser encontrado no sítio do cátion (Ga ou In) nos sítios centrais do nanofio e analizando a estrutura de bandas do SiGa e do SiIn, também observamos níveis doadores rasos. Entratanto, para nanofios de AlN, no centro do nanofio a probabilidade é maior de encontrar o átomo de Si no sítio do Al, mas na superfície a probabilidade é maior de encontrar o átomo de Si no sítio do N, sendo esta a configuração mais estável. Por fim, analisamos a variação do band offset com a variação do diâmetro do nanofios que forma a heteroestrutura. Consideramos heteroestruturas na fase wurtzita e blenda de zinco, pois nos processos de síntese as duas fases são obtidas. Observamos que o resultado é similar para as dias fases e, a medida, que o diâmetro aumenta o valor do band offset também aumenta, tendendo para o valor obtido para o cristal.Universidade Federal de Santa MariaBRFísicaUFSMPrograma de Pós-Graduação em FísicaBaierle, Rogério Joséhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782775Y3Kalempa, Denizehttp://lattes.cnpq.br/0530373050236115Corrêa, Marcio Assolinhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764347Y1Fernandes, Paulo Ricardo Garciahttp://lattes.cnpq.br/3223135002950210Piquini, Paulo Cesarhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782185U1Colussi, Marcio Luiz2017-05-092017-05-092012-07-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfapplication/pdfCOLUSSI, Marcio Luiz. Theoretical investigation of possible application of aln, gan and inn nanowires in the electonics: first principles study. 2012. 122 f. Tese (Doutorado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2012.http://repositorio.ufsm.br/handle/1/3910ark:/26339/0013000009v6fporinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2017-07-25T14:01:17Zoai:repositorio.ufsm.br:1/3910Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2017-07-25T14:01:17Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
Theoretical investigation of possible application of aln, gan and inn nanowires in the electonics: first principles study
title Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
spellingShingle Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
Colussi, Marcio Luiz
Nanofios
Heteroestruturas de nanofios
Impurezas substitucionais
Nanowires
Nanowire heterostructures
Substitutional impurities
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
title_full Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
title_fullStr Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
title_full_unstemmed Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
title_sort Investigação teórica sobre possíveis aplicações na eletrônica de nanofios de AlN, GaN e InN: um estudo de primeiros princípios
author Colussi, Marcio Luiz
author_facet Colussi, Marcio Luiz
author_role author
dc.contributor.none.fl_str_mv Baierle, Rogério José
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782775Y3
Kalempa, Denize
http://lattes.cnpq.br/0530373050236115
Corrêa, Marcio Assolin
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4764347Y1
Fernandes, Paulo Ricardo Garcia
http://lattes.cnpq.br/3223135002950210
Piquini, Paulo Cesar
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4782185U1
dc.contributor.author.fl_str_mv Colussi, Marcio Luiz
dc.subject.por.fl_str_mv Nanofios
Heteroestruturas de nanofios
Impurezas substitucionais
Nanowires
Nanowire heterostructures
Substitutional impurities
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
topic Nanofios
Heteroestruturas de nanofios
Impurezas substitucionais
Nanowires
Nanowire heterostructures
Substitutional impurities
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description Using the formalism of Density Functional Theory with spin polarization and the Generalized Gradient Approximation for exchange and correlation term, we studied the stability and electronic properties of substitutional impurities of C, Si and Ge in GaN, AlN and InN nanowires and the variation of the band offset with the diameter variation in AlN/GaN nanowires heterojunctions. For the study of substitutional impurities we use AlN, GaN and InN nanowires in the wurtzite phase with diameter of 14.47 Å, 14.7 Å and 16.5 Å, respectively. For the study of variation of the band offset with the diameter of the nanostructure, we use nanowires in the wurtzite phase with a mean diameter ranging from 0.99 nm to 2.7 nm and the zinc blende phase with an average diameter ranging from 0.75 nm to 2.1 nm. The electronic structure calculations show that of GaN, AlN and InN nanowires are semiconductors with direct band gap at point Γ. To study the substitutional impurities, we consider that the impurity can occupy the cation or anion sites in non-equivalent positions that are distributed from the center to the surface of the nanowire. For the C impurities, in GaN nanowires, we find that when the C atom is substituted in the N site, it will be uniformly distributed along the diameter of the nanowire. When substituted at the Ga site, it will be preferably find on the surface of the nanowire. In this case, the formation energy of CGa is almost identical to the CN, thus can occur formation of the auto-compensed CN-CGa pair. In AlN nanowires, when the C atom occupying the N site, it is also observed an almost uniform distribution along the diameter of the nanowire with a small preference (less energy formation) to the surface sites. Since the formation energy of the CN is lower than CAl in all regions of the nanowires, taking thus more likely to form CN. For InN nanowires, in the center sites, the formation energy of the CN and CIn is very similar, and the CN will have a uniform distribution along the diameter, but on the surface of the CIn is more stable and band structure show that this configuration has shallow donor levels. For Ge substitutional impurities in GaN nanowires, we observed that the center of the nanowire, the Ge atom is more likely to be found located in the Ga site, but in surface to find the most likely of N site, this being the most stable configuration. For AlN nanowires, the center of nanowire is possible to find the Ge atom at the N or Al sites, as the formation energy is practically the same. On the surface the more likely it is to find the Ge atom of the N site, which also is the most stable configuration. As for InN nanowires, the Ge atom will be found preferably at the In site with uniform distribution along the diameter of the nanowire. Analyzing the band structure of GeIn observed shallow donor levels. For the Si substitutional impurities, we obtain that in GaN and InN nanowires of the most stable configuration, the Si atom is to be found at the cation (Ga and In) sites in the central sites of the nanowire and analyzing the band structure of SiGa and SiIn, we also observed shalow donor levels. However, for AlN nanowires in the centerof the nanowire is greater the probability of finding the Si atom at the Al site, but the surface is greater the probability of finding the Si atom at the N site which is the most stable configuration. Finally, we analyze the variation of the band offset to the change in diameter of the nanowires forming the heterostructure. We consider heterostructure on yhe wurtzite and zinc blende phases, therefore during the synthesis the two phases are obtained. We found that the result is similar for the two phases and the extent that the diameter increases the value of the band offset also increases, tending to the value obtained for the bulk.
publishDate 2012
dc.date.none.fl_str_mv 2012-07-30
2017-05-09
2017-05-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv COLUSSI, Marcio Luiz. Theoretical investigation of possible application of aln, gan and inn nanowires in the electonics: first principles study. 2012. 122 f. Tese (Doutorado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2012.
http://repositorio.ufsm.br/handle/1/3910
dc.identifier.dark.fl_str_mv ark:/26339/0013000009v6f
identifier_str_mv COLUSSI, Marcio Luiz. Theoretical investigation of possible application of aln, gan and inn nanowires in the electonics: first principles study. 2012. 122 f. Tese (Doutorado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2012.
ark:/26339/0013000009v6f
url http://repositorio.ufsm.br/handle/1/3910
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Física
UFSM
Programa de Pós-Graduação em Física
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Física
UFSM
Programa de Pós-Graduação em Física
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172312422416384