Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000rvfz |
Texto Completo: | http://repositorio.ufsm.br/handle/1/22350 |
Resumo: | Recently, the use of geotechnologies allows the identification in real time of the changes that occur in the terrestrial surface, resulting from the natural phenomena and several anthropic processes. Many changes of this level can be detected from the monitoring and determination of radiative changes occurring on the surface. In this sense, the objective of the present study is to estimate the components of the surface radiation balance using the Surface Energy Balance Algorithms for Land (SEBAL) model with images generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in an area of flooded rice in the municipality of Cachoeira do Sul, Brazil. The study was carried out for the years 2013 to 2017, in which the results of the SEBAL model were validated with measurements made at a micrometeorological tower installed in the area of study. The fraction of cloudiness (FN) in 11 classes were classified in order to evaluate the impact of the data obtained in the days with different FN on the estimation of the Rn components by the SEBAL model. We identified the best values of the statistical indices for the estimated radiation balance during the lowest fraction of cloudiness. However, no significant differences were found in the statistical indices using the different FN classes. For the L _ component the estimation was proposed from the equation of Idso and Jackson (1969), whose presented better estimates and consequently better statistical indices for Rn. The input variables of the SEBAL model were analyzed together with the outputs and experimental measures using the Pearson correlation coefficient, showing high correlation between the input and output variables of the SEBAL model. In general, using the equation of Idso and Jackson (1969), the SEBAL model accurately estimates, through remote data from the MODIS sensor, the components of the surface energy balance for the experimental area in flooded rice for the different FN. In general, the SEBAL model accurately estimates the surface energy balance components using the equation of Idso and Jackson (1969) and remote data of the MODIS sensor for a flooded rice experimental area for with different FN classes. |
id |
UFSM_37d9af44d2712bc361abcf3229d88ca5 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/22350 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do BrasilMODISSEBALArrozSaldo de RadiaçãoRiceNet radiationCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIARecently, the use of geotechnologies allows the identification in real time of the changes that occur in the terrestrial surface, resulting from the natural phenomena and several anthropic processes. Many changes of this level can be detected from the monitoring and determination of radiative changes occurring on the surface. In this sense, the objective of the present study is to estimate the components of the surface radiation balance using the Surface Energy Balance Algorithms for Land (SEBAL) model with images generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in an area of flooded rice in the municipality of Cachoeira do Sul, Brazil. The study was carried out for the years 2013 to 2017, in which the results of the SEBAL model were validated with measurements made at a micrometeorological tower installed in the area of study. The fraction of cloudiness (FN) in 11 classes were classified in order to evaluate the impact of the data obtained in the days with different FN on the estimation of the Rn components by the SEBAL model. We identified the best values of the statistical indices for the estimated radiation balance during the lowest fraction of cloudiness. However, no significant differences were found in the statistical indices using the different FN classes. For the L _ component the estimation was proposed from the equation of Idso and Jackson (1969), whose presented better estimates and consequently better statistical indices for Rn. The input variables of the SEBAL model were analyzed together with the outputs and experimental measures using the Pearson correlation coefficient, showing high correlation between the input and output variables of the SEBAL model. In general, using the equation of Idso and Jackson (1969), the SEBAL model accurately estimates, through remote data from the MODIS sensor, the components of the surface energy balance for the experimental area in flooded rice for the different FN. In general, the SEBAL model accurately estimates the surface energy balance components using the equation of Idso and Jackson (1969) and remote data of the MODIS sensor for a flooded rice experimental area for with different FN classes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESRecentemente, o uso das geotecnologias possibilita a identificação em tempo real das alterações que ocorrem na superfície terrestre, resultantes dos fenômenos naturais e vários processos antrópicos. Muitas alterações deste nível podem ser detectadas a partir do monitoramento e determinação das trocas radiativas que ocorrem na superfície. Neste sentido, o objetivo do presente estudo é estimar as componentes do saldo da radiação a superfície utilizando o modelo Surface Energy Balance Algorithms for Land (SEBAL) com imagens geradas pelo sensor Moderate Resolution Imaging Spectroradiometer (MODIS) em uma área de arroz irrigado por inundação no município de Cachoeira do Sul, Brasil. O estudo foi realizado entre os anos de 2013 a 2017, em que os resultados do modelo SEBAL foram validados com medições realizadas na torre micrometeorológica instalada na área de estudo. Afim de avaliar o impacto dos dados obtidos nos dias com diferentes FN na estimativa das componentes do Rn no modelo SEBAL, foram classificadas a fração de nebulosidade (FN) em 11 classes. Identificou-se os melhores valores dos índices estatísticos para o saldo de radiação estimado durante a menor fração de nebulosidade. No entanto, não foram encontradas diferenças significativas nos índices estatísticos utilizando as diferentes FN. Para a componente L_ foi proposto o uso da equação para a estimativa a partir da equação de Idso e Jackson (1969), na qual apresentou melhores estimativas para L_ e consequentemente melhores índices estatísticos para o Rn. As variáveis de entrada do modelo SEBAL foram analisadas juntamente com as medidas experimentais, utilizando o coeficiente de correlação de Pearson, mostrando alta correlação entre as variáveis de entrada e saída do modelo SEBAL. De modo geral, utilizando da equação de Idso e Jackson (1969) o modelo SEBAL estima de forma acurada, através de dados remotos do sensor MODIS, as componentes do balanço de energia em superfície, para a área experimental no arroz irrigado por inundação para as diferentes FN.Universidade Federal de Santa MariaBrasilMeteorologiaUFSMPrograma de Pós-Graduação em MeteorologiaCentro de Ciências Naturais e ExatasRoberti, Débora Reginahttp://lattes.cnpq.br/6952076109453197Souza, Vanessa de ArrudaRuhoff, Anderson LuisGonçalves, Luis Gustavo Gonçalves deFagundes, Lucas Augusto2021-10-06T17:32:31Z2021-10-06T17:32:31Z2019-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22350ark:/26339/001300000rvfzporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-13T18:20:49Zoai:repositorio.ufsm.br:1/22350Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-13T18:20:49Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
title |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
spellingShingle |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil Fagundes, Lucas Augusto MODIS SEBAL Arroz Saldo de Radiação Rice Net radiation CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
title_short |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
title_full |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
title_fullStr |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
title_full_unstemmed |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
title_sort |
Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil |
author |
Fagundes, Lucas Augusto |
author_facet |
Fagundes, Lucas Augusto |
author_role |
author |
dc.contributor.none.fl_str_mv |
Roberti, Débora Regina http://lattes.cnpq.br/6952076109453197 Souza, Vanessa de Arruda Ruhoff, Anderson Luis Gonçalves, Luis Gustavo Gonçalves de |
dc.contributor.author.fl_str_mv |
Fagundes, Lucas Augusto |
dc.subject.por.fl_str_mv |
MODIS SEBAL Arroz Saldo de Radiação Rice Net radiation CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
topic |
MODIS SEBAL Arroz Saldo de Radiação Rice Net radiation CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
description |
Recently, the use of geotechnologies allows the identification in real time of the changes that occur in the terrestrial surface, resulting from the natural phenomena and several anthropic processes. Many changes of this level can be detected from the monitoring and determination of radiative changes occurring on the surface. In this sense, the objective of the present study is to estimate the components of the surface radiation balance using the Surface Energy Balance Algorithms for Land (SEBAL) model with images generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in an area of flooded rice in the municipality of Cachoeira do Sul, Brazil. The study was carried out for the years 2013 to 2017, in which the results of the SEBAL model were validated with measurements made at a micrometeorological tower installed in the area of study. The fraction of cloudiness (FN) in 11 classes were classified in order to evaluate the impact of the data obtained in the days with different FN on the estimation of the Rn components by the SEBAL model. We identified the best values of the statistical indices for the estimated radiation balance during the lowest fraction of cloudiness. However, no significant differences were found in the statistical indices using the different FN classes. For the L _ component the estimation was proposed from the equation of Idso and Jackson (1969), whose presented better estimates and consequently better statistical indices for Rn. The input variables of the SEBAL model were analyzed together with the outputs and experimental measures using the Pearson correlation coefficient, showing high correlation between the input and output variables of the SEBAL model. In general, using the equation of Idso and Jackson (1969), the SEBAL model accurately estimates, through remote data from the MODIS sensor, the components of the surface energy balance for the experimental area in flooded rice for the different FN. In general, the SEBAL model accurately estimates the surface energy balance components using the equation of Idso and Jackson (1969) and remote data of the MODIS sensor for a flooded rice experimental area for with different FN classes. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-19 2021-10-06T17:32:31Z 2021-10-06T17:32:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/22350 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000rvfz |
url |
http://repositorio.ufsm.br/handle/1/22350 |
identifier_str_mv |
ark:/26339/001300000rvfz |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172386947858432 |