Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil

Detalhes bibliográficos
Autor(a) principal: Fagundes, Lucas Augusto
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000rvfz
Texto Completo: http://repositorio.ufsm.br/handle/1/22350
Resumo: Recently, the use of geotechnologies allows the identification in real time of the changes that occur in the terrestrial surface, resulting from the natural phenomena and several anthropic processes. Many changes of this level can be detected from the monitoring and determination of radiative changes occurring on the surface. In this sense, the objective of the present study is to estimate the components of the surface radiation balance using the Surface Energy Balance Algorithms for Land (SEBAL) model with images generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in an area of flooded rice in the municipality of Cachoeira do Sul, Brazil. The study was carried out for the years 2013 to 2017, in which the results of the SEBAL model were validated with measurements made at a micrometeorological tower installed in the area of study. The fraction of cloudiness (FN) in 11 classes were classified in order to evaluate the impact of the data obtained in the days with different FN on the estimation of the Rn components by the SEBAL model. We identified the best values of the statistical indices for the estimated radiation balance during the lowest fraction of cloudiness. However, no significant differences were found in the statistical indices using the different FN classes. For the L _ component the estimation was proposed from the equation of Idso and Jackson (1969), whose presented better estimates and consequently better statistical indices for Rn. The input variables of the SEBAL model were analyzed together with the outputs and experimental measures using the Pearson correlation coefficient, showing high correlation between the input and output variables of the SEBAL model. In general, using the equation of Idso and Jackson (1969), the SEBAL model accurately estimates, through remote data from the MODIS sensor, the components of the surface energy balance for the experimental area in flooded rice for the different FN. In general, the SEBAL model accurately estimates the surface energy balance components using the equation of Idso and Jackson (1969) and remote data of the MODIS sensor for a flooded rice experimental area for with different FN classes.
id UFSM_37d9af44d2712bc361abcf3229d88ca5
oai_identifier_str oai:repositorio.ufsm.br:1/22350
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do BrasilMODISSEBALArrozSaldo de RadiaçãoRiceNet radiationCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIARecently, the use of geotechnologies allows the identification in real time of the changes that occur in the terrestrial surface, resulting from the natural phenomena and several anthropic processes. Many changes of this level can be detected from the monitoring and determination of radiative changes occurring on the surface. In this sense, the objective of the present study is to estimate the components of the surface radiation balance using the Surface Energy Balance Algorithms for Land (SEBAL) model with images generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in an area of flooded rice in the municipality of Cachoeira do Sul, Brazil. The study was carried out for the years 2013 to 2017, in which the results of the SEBAL model were validated with measurements made at a micrometeorological tower installed in the area of study. The fraction of cloudiness (FN) in 11 classes were classified in order to evaluate the impact of the data obtained in the days with different FN on the estimation of the Rn components by the SEBAL model. We identified the best values of the statistical indices for the estimated radiation balance during the lowest fraction of cloudiness. However, no significant differences were found in the statistical indices using the different FN classes. For the L _ component the estimation was proposed from the equation of Idso and Jackson (1969), whose presented better estimates and consequently better statistical indices for Rn. The input variables of the SEBAL model were analyzed together with the outputs and experimental measures using the Pearson correlation coefficient, showing high correlation between the input and output variables of the SEBAL model. In general, using the equation of Idso and Jackson (1969), the SEBAL model accurately estimates, through remote data from the MODIS sensor, the components of the surface energy balance for the experimental area in flooded rice for the different FN. In general, the SEBAL model accurately estimates the surface energy balance components using the equation of Idso and Jackson (1969) and remote data of the MODIS sensor for a flooded rice experimental area for with different FN classes.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESRecentemente, o uso das geotecnologias possibilita a identificação em tempo real das alterações que ocorrem na superfície terrestre, resultantes dos fenômenos naturais e vários processos antrópicos. Muitas alterações deste nível podem ser detectadas a partir do monitoramento e determinação das trocas radiativas que ocorrem na superfície. Neste sentido, o objetivo do presente estudo é estimar as componentes do saldo da radiação a superfície utilizando o modelo Surface Energy Balance Algorithms for Land (SEBAL) com imagens geradas pelo sensor Moderate Resolution Imaging Spectroradiometer (MODIS) em uma área de arroz irrigado por inundação no município de Cachoeira do Sul, Brasil. O estudo foi realizado entre os anos de 2013 a 2017, em que os resultados do modelo SEBAL foram validados com medições realizadas na torre micrometeorológica instalada na área de estudo. Afim de avaliar o impacto dos dados obtidos nos dias com diferentes FN na estimativa das componentes do Rn no modelo SEBAL, foram classificadas a fração de nebulosidade (FN) em 11 classes. Identificou-se os melhores valores dos índices estatísticos para o saldo de radiação estimado durante a menor fração de nebulosidade. No entanto, não foram encontradas diferenças significativas nos índices estatísticos utilizando as diferentes FN. Para a componente L_ foi proposto o uso da equação para a estimativa a partir da equação de Idso e Jackson (1969), na qual apresentou melhores estimativas para L_ e consequentemente melhores índices estatísticos para o Rn. As variáveis de entrada do modelo SEBAL foram analisadas juntamente com as medidas experimentais, utilizando o coeficiente de correlação de Pearson, mostrando alta correlação entre as variáveis de entrada e saída do modelo SEBAL. De modo geral, utilizando da equação de Idso e Jackson (1969) o modelo SEBAL estima de forma acurada, através de dados remotos do sensor MODIS, as componentes do balanço de energia em superfície, para a área experimental no arroz irrigado por inundação para as diferentes FN.Universidade Federal de Santa MariaBrasilMeteorologiaUFSMPrograma de Pós-Graduação em MeteorologiaCentro de Ciências Naturais e ExatasRoberti, Débora Reginahttp://lattes.cnpq.br/6952076109453197Souza, Vanessa de ArrudaRuhoff, Anderson LuisGonçalves, Luis Gustavo Gonçalves deFagundes, Lucas Augusto2021-10-06T17:32:31Z2021-10-06T17:32:31Z2019-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22350ark:/26339/001300000rvfzporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-13T18:20:49Zoai:repositorio.ufsm.br:1/22350Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-13T18:20:49Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
title Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
spellingShingle Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
Fagundes, Lucas Augusto
MODIS
SEBAL
Arroz
Saldo de Radiação
Rice
Net radiation
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA
title_short Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
title_full Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
title_fullStr Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
title_full_unstemmed Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
title_sort Análise das componentes da equação do balanço de radiação utilizando o modelo Sebal no sul do Brasil
author Fagundes, Lucas Augusto
author_facet Fagundes, Lucas Augusto
author_role author
dc.contributor.none.fl_str_mv Roberti, Débora Regina
http://lattes.cnpq.br/6952076109453197
Souza, Vanessa de Arruda
Ruhoff, Anderson Luis
Gonçalves, Luis Gustavo Gonçalves de
dc.contributor.author.fl_str_mv Fagundes, Lucas Augusto
dc.subject.por.fl_str_mv MODIS
SEBAL
Arroz
Saldo de Radiação
Rice
Net radiation
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA
topic MODIS
SEBAL
Arroz
Saldo de Radiação
Rice
Net radiation
CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA
description Recently, the use of geotechnologies allows the identification in real time of the changes that occur in the terrestrial surface, resulting from the natural phenomena and several anthropic processes. Many changes of this level can be detected from the monitoring and determination of radiative changes occurring on the surface. In this sense, the objective of the present study is to estimate the components of the surface radiation balance using the Surface Energy Balance Algorithms for Land (SEBAL) model with images generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor in an area of flooded rice in the municipality of Cachoeira do Sul, Brazil. The study was carried out for the years 2013 to 2017, in which the results of the SEBAL model were validated with measurements made at a micrometeorological tower installed in the area of study. The fraction of cloudiness (FN) in 11 classes were classified in order to evaluate the impact of the data obtained in the days with different FN on the estimation of the Rn components by the SEBAL model. We identified the best values of the statistical indices for the estimated radiation balance during the lowest fraction of cloudiness. However, no significant differences were found in the statistical indices using the different FN classes. For the L _ component the estimation was proposed from the equation of Idso and Jackson (1969), whose presented better estimates and consequently better statistical indices for Rn. The input variables of the SEBAL model were analyzed together with the outputs and experimental measures using the Pearson correlation coefficient, showing high correlation between the input and output variables of the SEBAL model. In general, using the equation of Idso and Jackson (1969), the SEBAL model accurately estimates, through remote data from the MODIS sensor, the components of the surface energy balance for the experimental area in flooded rice for the different FN. In general, the SEBAL model accurately estimates the surface energy balance components using the equation of Idso and Jackson (1969) and remote data of the MODIS sensor for a flooded rice experimental area for with different FN classes.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-19
2021-10-06T17:32:31Z
2021-10-06T17:32:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/22350
dc.identifier.dark.fl_str_mv ark:/26339/001300000rvfz
url http://repositorio.ufsm.br/handle/1/22350
identifier_str_mv ark:/26339/001300000rvfz
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Meteorologia
UFSM
Programa de Pós-Graduação em Meteorologia
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Meteorologia
UFSM
Programa de Pós-Graduação em Meteorologia
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172386947858432