Modelos de crescimento de cultivares de centeio

Detalhes bibliográficos
Autor(a) principal: Kleinpaul, Jéssica Andiara
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000qsc0
Texto Completo: http://repositorio.ufsm.br/handle/1/15938
Resumo: The objectives of this study were to adjust the nonlinear models, Gompertz and Logistic, to describe the plant height, fresh matter of aerial and dry matter of aerial and indicate the model that best describes the growth of two rye cultivars, BRS Progresso and Temprano, in five sowing seasons. Ten uniformity trials were conducted with the rye crop in the 2016 harvest. Ten plants weekly were evaluated from the first leaf to be fully expanded, randomly chosen within each assay. In each plant were evaluated the characters of plant height, fresh matter of aerial and dry matter of aerial. For the adjustment of the Gompertz and Logistic models as a function of the accumulated thermal sum, the mean value of each character in each evaluation was considered. Were estimated parameters a, b and c for each model. The confidence interval for each parameter, inflection points, maximum acceleration, maximum deceleration and asymptotic deceleration was calculated. The quality of fit of the models was verified by the coefficient of determination, Akaike's information criterion and residual standard deviation. For analysis of the behavior of the models, the nonlinearity present in the models was quantified through the intrinsic nonlinearity and the nonlinearity of the parameter effect. Both models satisfactorily describe the behavior of the characters in rye cultivars at sowing times. The model that best describes the growth behavior of rye cultivars is the Logistic model.
id UFSM_39c237d423f813e65d4bdf07625d72c3
oai_identifier_str oai:repositorio.ufsm.br:1/15938
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Modelos de crescimento de cultivares de centeioGrowth models of rye cultivarsSecale cereale L.Modelos não linearesPlanta de cobertura de soloCereais de invernoNon-linear modelsGround cover plantWinter cerealsCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThe objectives of this study were to adjust the nonlinear models, Gompertz and Logistic, to describe the plant height, fresh matter of aerial and dry matter of aerial and indicate the model that best describes the growth of two rye cultivars, BRS Progresso and Temprano, in five sowing seasons. Ten uniformity trials were conducted with the rye crop in the 2016 harvest. Ten plants weekly were evaluated from the first leaf to be fully expanded, randomly chosen within each assay. In each plant were evaluated the characters of plant height, fresh matter of aerial and dry matter of aerial. For the adjustment of the Gompertz and Logistic models as a function of the accumulated thermal sum, the mean value of each character in each evaluation was considered. Were estimated parameters a, b and c for each model. The confidence interval for each parameter, inflection points, maximum acceleration, maximum deceleration and asymptotic deceleration was calculated. The quality of fit of the models was verified by the coefficient of determination, Akaike's information criterion and residual standard deviation. For analysis of the behavior of the models, the nonlinearity present in the models was quantified through the intrinsic nonlinearity and the nonlinearity of the parameter effect. Both models satisfactorily describe the behavior of the characters in rye cultivars at sowing times. The model that best describes the growth behavior of rye cultivars is the Logistic model.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqOs objetivos deste estudo foram ajustar os modelos não lineares, Gompertz e Logístico, para altura de planta, massa de matéria fresca de parte aérea e massa de matéria seca de parte aérea e indicar o modelo que melhor descreve o crescimento de duas cultivares de centeio, BRS Progresso e Temprano, em cinco épocas de semeadura. Foram conduzidos dez ensaios de uniformidade com a cultura de centeio na safra 2016. Avaliaram-se dez plantas semanalmente a partir da primeira folha estar completamente expandida, escolhidas de forma aleatória dentro de cada ensaio. Em cada planta foram avaliados os caracteres altura de planta, massa de matéria fresca de parte aérea e massa de matéria seca de parte aérea. Para o ajuste dos modelos Gompertz e Logístico em função da soma térmica acumulada, foi considerado o valor médio de cada caractere em cada avaliação. Foram estimados os parâmetros a, b e c para cada modelo. Calculou-se o intervalo de confiança para cada parâmetro, os pontos de inflexão, aceleração máxima, desaceleração máxima e desaceleração assintótica. A qualidade do ajuste dos modelos foi verificada pelo coeficiente de determinação, critério de informação de Akaike e desvio padrão residual. Para análise do comportamento dos modelos foi quantificada a não linearidade presente nos modelos, através da não linearidade intrínseca e da não linearidade do efeito do parâmetro. Ambos os modelos, descrevem satisfatoriamente o comportamento dos caracteres, nas cultivares de centeio, em épocas de semeadura. O modelo que melhor descreve o comportamento de crescimento das cultivares de centeio é o modelo Logístico.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em AgronomiaCentro de Ciências RuraisCargnelutti Filho, Albertohttp://lattes.cnpq.br/0233728865094243Lorentz, Leandro Homrichhttp://lattes.cnpq.br/3133075693356442Storck, Lindolfohttp://lattes.cnpq.br/7538496041313334Kleinpaul, Jéssica Andiara2019-03-20T14:42:51Z2019-03-20T14:42:51Z2018-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/15938ark:/26339/001300000qsc0porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-03-21T06:00:25Zoai:repositorio.ufsm.br:1/15938Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-29T10:50:50.789061Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Modelos de crescimento de cultivares de centeio
Growth models of rye cultivars
title Modelos de crescimento de cultivares de centeio
spellingShingle Modelos de crescimento de cultivares de centeio
Kleinpaul, Jéssica Andiara
Secale cereale L.
Modelos não lineares
Planta de cobertura de solo
Cereais de inverno
Non-linear models
Ground cover plant
Winter cereals
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Modelos de crescimento de cultivares de centeio
title_full Modelos de crescimento de cultivares de centeio
title_fullStr Modelos de crescimento de cultivares de centeio
title_full_unstemmed Modelos de crescimento de cultivares de centeio
title_sort Modelos de crescimento de cultivares de centeio
author Kleinpaul, Jéssica Andiara
author_facet Kleinpaul, Jéssica Andiara
author_role author
dc.contributor.none.fl_str_mv Cargnelutti Filho, Alberto
http://lattes.cnpq.br/0233728865094243
Lorentz, Leandro Homrich
http://lattes.cnpq.br/3133075693356442
Storck, Lindolfo
http://lattes.cnpq.br/7538496041313334
dc.contributor.author.fl_str_mv Kleinpaul, Jéssica Andiara
dc.subject.por.fl_str_mv Secale cereale L.
Modelos não lineares
Planta de cobertura de solo
Cereais de inverno
Non-linear models
Ground cover plant
Winter cereals
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Secale cereale L.
Modelos não lineares
Planta de cobertura de solo
Cereais de inverno
Non-linear models
Ground cover plant
Winter cereals
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description The objectives of this study were to adjust the nonlinear models, Gompertz and Logistic, to describe the plant height, fresh matter of aerial and dry matter of aerial and indicate the model that best describes the growth of two rye cultivars, BRS Progresso and Temprano, in five sowing seasons. Ten uniformity trials were conducted with the rye crop in the 2016 harvest. Ten plants weekly were evaluated from the first leaf to be fully expanded, randomly chosen within each assay. In each plant were evaluated the characters of plant height, fresh matter of aerial and dry matter of aerial. For the adjustment of the Gompertz and Logistic models as a function of the accumulated thermal sum, the mean value of each character in each evaluation was considered. Were estimated parameters a, b and c for each model. The confidence interval for each parameter, inflection points, maximum acceleration, maximum deceleration and asymptotic deceleration was calculated. The quality of fit of the models was verified by the coefficient of determination, Akaike's information criterion and residual standard deviation. For analysis of the behavior of the models, the nonlinearity present in the models was quantified through the intrinsic nonlinearity and the nonlinearity of the parameter effect. Both models satisfactorily describe the behavior of the characters in rye cultivars at sowing times. The model that best describes the growth behavior of rye cultivars is the Logistic model.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-19
2019-03-20T14:42:51Z
2019-03-20T14:42:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/15938
dc.identifier.dark.fl_str_mv ark:/26339/001300000qsc0
url http://repositorio.ufsm.br/handle/1/15938
identifier_str_mv ark:/26339/001300000qsc0
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1814439830286761984