Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000007q08 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/31855 |
Resumo: | Water contamination by heavy metals such as lead is a major concern due to the potential health hazards associated with exposure to this metal. In this context, the main objective of this study was the development of nanofibers composed of copper oxide (II) (CuO) and the evaluation of their performance as adsorbents for lead (II) in aqueous solutions. The nanofibers were produced using the centrifugal spinning technique with the Forcespinning® equipment, followed by calcination to obtain the nanofibers composed of CuO. The nanofibers were characterized before and after the calcination step using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) analysis. The SEM results showed a transition in the morphology of the smooth cylindrical fibers to a network of macroporous fibers after the calcination step. The FTIR spectrum of the nanofibers composed of CuO exhibited a peak at 528 cm-1, attributed to Cu-O vibrations, indicating the formation of CuO after calcination. In thermogravimetric analysis, the nanofibers composed of CuO exhibited a mass loss of 15.78% as the temperature was increased from 25 to 999.6 ºC, indicating good thermal stability of the material. X-ray diffraction analysis showed diffraction peaks corresponding to the monoclinic crystalline structure of CuO in the nanofiber composed of CuO. The results of BET surface analysis indicated a reduction in surface area from 36.18 m² g-1 for PAN/CuSO4 nanofibers to 2.37 m² g-1 for nanofibers composed of CuO. Adsorption studies were conducted using the nanofibers composed of CuO as adsorbents and lead (II) as the adsorbate in aqueous solution. Experiments were performed to evaluate the effect of pH, adsorption kinetics, adsorption equilibrium, and thermodynamic parameters. The adsorption of lead (II) was favorable at pH 5.8 and 298 K, with a maximum adsorption capacity of 151.34 mg g-1 according to the Hill model. The model that best described the kinetic data was the pseudo-first-order model. The Hill model provided the best fit for the equilibrium data. The thermodynamic parameters indicate that the adsorption process was favorable, spontaneous, and exothermic. The nanofibers composed of CuO exhibited excellent stability after two regeneration cycles, maintaining 97.51% of their original adsorption capacity in the second cycle. Therefore, the results showed that nanofibers composed of CuO have a high potential as a lead (II) adsorbent. |
id |
UFSM_400c03f667e452f5fe913c30cb14eb7b |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/31855 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosasProduction of nanofibers composed of CuO for removal of Pb(II) from aqueous solutionsNanofibras poliméricasPoliacrilonitrilaFiação centrífugaCalcinaçãoChumboAdsorçãoPolymeric nanofibersPolyacrylonitrileCentrifugal spinningCalcinationAdsorptionCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAWater contamination by heavy metals such as lead is a major concern due to the potential health hazards associated with exposure to this metal. In this context, the main objective of this study was the development of nanofibers composed of copper oxide (II) (CuO) and the evaluation of their performance as adsorbents for lead (II) in aqueous solutions. The nanofibers were produced using the centrifugal spinning technique with the Forcespinning® equipment, followed by calcination to obtain the nanofibers composed of CuO. The nanofibers were characterized before and after the calcination step using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) analysis. The SEM results showed a transition in the morphology of the smooth cylindrical fibers to a network of macroporous fibers after the calcination step. The FTIR spectrum of the nanofibers composed of CuO exhibited a peak at 528 cm-1, attributed to Cu-O vibrations, indicating the formation of CuO after calcination. In thermogravimetric analysis, the nanofibers composed of CuO exhibited a mass loss of 15.78% as the temperature was increased from 25 to 999.6 ºC, indicating good thermal stability of the material. X-ray diffraction analysis showed diffraction peaks corresponding to the monoclinic crystalline structure of CuO in the nanofiber composed of CuO. The results of BET surface analysis indicated a reduction in surface area from 36.18 m² g-1 for PAN/CuSO4 nanofibers to 2.37 m² g-1 for nanofibers composed of CuO. Adsorption studies were conducted using the nanofibers composed of CuO as adsorbents and lead (II) as the adsorbate in aqueous solution. Experiments were performed to evaluate the effect of pH, adsorption kinetics, adsorption equilibrium, and thermodynamic parameters. The adsorption of lead (II) was favorable at pH 5.8 and 298 K, with a maximum adsorption capacity of 151.34 mg g-1 according to the Hill model. The model that best described the kinetic data was the pseudo-first-order model. The Hill model provided the best fit for the equilibrium data. The thermodynamic parameters indicate that the adsorption process was favorable, spontaneous, and exothermic. The nanofibers composed of CuO exhibited excellent stability after two regeneration cycles, maintaining 97.51% of their original adsorption capacity in the second cycle. Therefore, the results showed that nanofibers composed of CuO have a high potential as a lead (II) adsorbent.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA contaminação da água por metais pesados como o chumbo causa muita preocupação, devido aos potenciais malefícios à saúde decorrentes da exposição a esse metal. Neste sentido, o principal objetivo deste trabalho foi o desenvolvimento de nanofibras compostas de óxido de cobre (II) (CuO), bem como a avaliação do seu desempenho como adsorvente de chumbo (II) em soluções aquosas. As nanofibras foram produzidas pela técnica de fiação centrífuga, utilizando o equipamento Forcespinning® e, em seguida, foram calcinadas para a obtenção das nanofibras compostas de CuO. As nanofibras foram caracterizadas antes e depois da etapa de calcinação, utilizando microscopia eletrônica de varredura (MEV), espectroscopia de infravermelho por transformada de fourier (FTIR), análise termogravimétrica (TGA), difração de raios-X (DRX) e Brunauer-Emmet-Teller (BET). O resultado do MEV mostrou que, após a etapa de calcinação, ocorreu uma transição na morfologia das fibras cilíndricas lisas para uma rede de fibras macroporosas. No resultado do FTIR, o espectro da nanofibra composta de CuO apresentou um pico em 528 cm-1, atribuído às vibrações de Cu-O, indicando a formação de CuO após a calcinação. Na análise termogravimétrica, a nanofibra composta de CuO apresentou perda de massa de 15,78% à medida que a temperatura foi elevada de 25 para 999,6 ºC, indicando a boa estabilidade térmica do material. Na análise de DRX, a nanofibra composta de CuO apresentou picos de difração correspondentes à estrutura cristalina monoclínica de CuO. Os resultados da análise de superfície BET indicaram uma redução da área de 36,18 m² g-1 para as nanofibras PAN/CuSO4 para 2,37 m² g-1 na nanofibra composta de CuO. Os estudos de adsorção foram realizados utilizando as nanofibras compostas de CuO como adsorvente e chumbo (II) como adsorvato em solução aquosa. Foram realizados ensaios para avaliar o efeito do pH, cinética de adsorção, equilíbrio de adsorção e os parâmetros termodinâmicos. A adsorção do chumbo (II) foi favorável em pH 5,8 e 298 K, com capacidade máxima de adsorção, conforme o modelo de Hill, de 151,34 mg g-1. O modelo que melhor descreveu os dados cinéticos foi o de pseudo-primeira ordem. O modelo que melhor ajustou os dados de equilíbrio foi o modelo de Hill. Os parâmetros termodinâmicos mostram que o processo de adsorção foi favorável, espontâneo e exotérmico. As nanofibras compostas de CuO apresentaram excelente estabilidade após dois ciclos de regeneração, sendo que no segundo ciclo manteve 97,51 % da sua capacidade de adsorção original. Assim, os resultados evidenciaram que as nanofibras compostas de CuO possuem um elevado potencial como adsorvente de chumbo (II).Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaTanabe, Eduardo Hiromitsuhttp://lattes.cnpq.br/9778700143605069Bertuol, Daniel AssumpçãoCancelier, AdrianoAlmeida, André Ricardo Felkl deSantos, Amábile Giotto dos2024-04-26T15:40:36Z2024-04-26T15:40:36Z2024-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31855ark:/26339/0013000007q08porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-04-26T15:40:36Zoai:repositorio.ufsm.br:1/31855Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-04-26T15:40:36Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas Production of nanofibers composed of CuO for removal of Pb(II) from aqueous solutions |
title |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas |
spellingShingle |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas Santos, Amábile Giotto dos Nanofibras poliméricas Poliacrilonitrila Fiação centrífuga Calcinação Chumbo Adsorção Polymeric nanofibers Polyacrylonitrile Centrifugal spinning Calcination Adsorption CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas |
title_full |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas |
title_fullStr |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas |
title_full_unstemmed |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas |
title_sort |
Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas |
author |
Santos, Amábile Giotto dos |
author_facet |
Santos, Amábile Giotto dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tanabe, Eduardo Hiromitsu http://lattes.cnpq.br/9778700143605069 Bertuol, Daniel Assumpção Cancelier, Adriano Almeida, André Ricardo Felkl de |
dc.contributor.author.fl_str_mv |
Santos, Amábile Giotto dos |
dc.subject.por.fl_str_mv |
Nanofibras poliméricas Poliacrilonitrila Fiação centrífuga Calcinação Chumbo Adsorção Polymeric nanofibers Polyacrylonitrile Centrifugal spinning Calcination Adsorption CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
topic |
Nanofibras poliméricas Poliacrilonitrila Fiação centrífuga Calcinação Chumbo Adsorção Polymeric nanofibers Polyacrylonitrile Centrifugal spinning Calcination Adsorption CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Water contamination by heavy metals such as lead is a major concern due to the potential health hazards associated with exposure to this metal. In this context, the main objective of this study was the development of nanofibers composed of copper oxide (II) (CuO) and the evaluation of their performance as adsorbents for lead (II) in aqueous solutions. The nanofibers were produced using the centrifugal spinning technique with the Forcespinning® equipment, followed by calcination to obtain the nanofibers composed of CuO. The nanofibers were characterized before and after the calcination step using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) analysis. The SEM results showed a transition in the morphology of the smooth cylindrical fibers to a network of macroporous fibers after the calcination step. The FTIR spectrum of the nanofibers composed of CuO exhibited a peak at 528 cm-1, attributed to Cu-O vibrations, indicating the formation of CuO after calcination. In thermogravimetric analysis, the nanofibers composed of CuO exhibited a mass loss of 15.78% as the temperature was increased from 25 to 999.6 ºC, indicating good thermal stability of the material. X-ray diffraction analysis showed diffraction peaks corresponding to the monoclinic crystalline structure of CuO in the nanofiber composed of CuO. The results of BET surface analysis indicated a reduction in surface area from 36.18 m² g-1 for PAN/CuSO4 nanofibers to 2.37 m² g-1 for nanofibers composed of CuO. Adsorption studies were conducted using the nanofibers composed of CuO as adsorbents and lead (II) as the adsorbate in aqueous solution. Experiments were performed to evaluate the effect of pH, adsorption kinetics, adsorption equilibrium, and thermodynamic parameters. The adsorption of lead (II) was favorable at pH 5.8 and 298 K, with a maximum adsorption capacity of 151.34 mg g-1 according to the Hill model. The model that best described the kinetic data was the pseudo-first-order model. The Hill model provided the best fit for the equilibrium data. The thermodynamic parameters indicate that the adsorption process was favorable, spontaneous, and exothermic. The nanofibers composed of CuO exhibited excellent stability after two regeneration cycles, maintaining 97.51% of their original adsorption capacity in the second cycle. Therefore, the results showed that nanofibers composed of CuO have a high potential as a lead (II) adsorbent. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-26T15:40:36Z 2024-04-26T15:40:36Z 2024-02-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/31855 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000007q08 |
url |
http://repositorio.ufsm.br/handle/1/31855 |
identifier_str_mv |
ark:/26339/0013000007q08 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Química UFSM Programa de Pós-Graduação em Engenharia Química Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Química UFSM Programa de Pós-Graduação em Engenharia Química Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172300295634944 |