Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas

Detalhes bibliográficos
Autor(a) principal: Santos, Amábile Giotto dos
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000007q08
Texto Completo: http://repositorio.ufsm.br/handle/1/31855
Resumo: Water contamination by heavy metals such as lead is a major concern due to the potential health hazards associated with exposure to this metal. In this context, the main objective of this study was the development of nanofibers composed of copper oxide (II) (CuO) and the evaluation of their performance as adsorbents for lead (II) in aqueous solutions. The nanofibers were produced using the centrifugal spinning technique with the Forcespinning® equipment, followed by calcination to obtain the nanofibers composed of CuO. The nanofibers were characterized before and after the calcination step using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) analysis. The SEM results showed a transition in the morphology of the smooth cylindrical fibers to a network of macroporous fibers after the calcination step. The FTIR spectrum of the nanofibers composed of CuO exhibited a peak at 528 cm-1, attributed to Cu-O vibrations, indicating the formation of CuO after calcination. In thermogravimetric analysis, the nanofibers composed of CuO exhibited a mass loss of 15.78% as the temperature was increased from 25 to 999.6 ºC, indicating good thermal stability of the material. X-ray diffraction analysis showed diffraction peaks corresponding to the monoclinic crystalline structure of CuO in the nanofiber composed of CuO. The results of BET surface analysis indicated a reduction in surface area from 36.18 m² g-1 for PAN/CuSO4 nanofibers to 2.37 m² g-1 for nanofibers composed of CuO. Adsorption studies were conducted using the nanofibers composed of CuO as adsorbents and lead (II) as the adsorbate in aqueous solution. Experiments were performed to evaluate the effect of pH, adsorption kinetics, adsorption equilibrium, and thermodynamic parameters. The adsorption of lead (II) was favorable at pH 5.8 and 298 K, with a maximum adsorption capacity of 151.34 mg g-1 according to the Hill model. The model that best described the kinetic data was the pseudo-first-order model. The Hill model provided the best fit for the equilibrium data. The thermodynamic parameters indicate that the adsorption process was favorable, spontaneous, and exothermic. The nanofibers composed of CuO exhibited excellent stability after two regeneration cycles, maintaining 97.51% of their original adsorption capacity in the second cycle. Therefore, the results showed that nanofibers composed of CuO have a high potential as a lead (II) adsorbent.
id UFSM_400c03f667e452f5fe913c30cb14eb7b
oai_identifier_str oai:repositorio.ufsm.br:1/31855
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosasProduction of nanofibers composed of CuO for removal of Pb(II) from aqueous solutionsNanofibras poliméricasPoliacrilonitrilaFiação centrífugaCalcinaçãoChumboAdsorçãoPolymeric nanofibersPolyacrylonitrileCentrifugal spinningCalcinationAdsorptionCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAWater contamination by heavy metals such as lead is a major concern due to the potential health hazards associated with exposure to this metal. In this context, the main objective of this study was the development of nanofibers composed of copper oxide (II) (CuO) and the evaluation of their performance as adsorbents for lead (II) in aqueous solutions. The nanofibers were produced using the centrifugal spinning technique with the Forcespinning® equipment, followed by calcination to obtain the nanofibers composed of CuO. The nanofibers were characterized before and after the calcination step using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) analysis. The SEM results showed a transition in the morphology of the smooth cylindrical fibers to a network of macroporous fibers after the calcination step. The FTIR spectrum of the nanofibers composed of CuO exhibited a peak at 528 cm-1, attributed to Cu-O vibrations, indicating the formation of CuO after calcination. In thermogravimetric analysis, the nanofibers composed of CuO exhibited a mass loss of 15.78% as the temperature was increased from 25 to 999.6 ºC, indicating good thermal stability of the material. X-ray diffraction analysis showed diffraction peaks corresponding to the monoclinic crystalline structure of CuO in the nanofiber composed of CuO. The results of BET surface analysis indicated a reduction in surface area from 36.18 m² g-1 for PAN/CuSO4 nanofibers to 2.37 m² g-1 for nanofibers composed of CuO. Adsorption studies were conducted using the nanofibers composed of CuO as adsorbents and lead (II) as the adsorbate in aqueous solution. Experiments were performed to evaluate the effect of pH, adsorption kinetics, adsorption equilibrium, and thermodynamic parameters. The adsorption of lead (II) was favorable at pH 5.8 and 298 K, with a maximum adsorption capacity of 151.34 mg g-1 according to the Hill model. The model that best described the kinetic data was the pseudo-first-order model. The Hill model provided the best fit for the equilibrium data. The thermodynamic parameters indicate that the adsorption process was favorable, spontaneous, and exothermic. The nanofibers composed of CuO exhibited excellent stability after two regeneration cycles, maintaining 97.51% of their original adsorption capacity in the second cycle. Therefore, the results showed that nanofibers composed of CuO have a high potential as a lead (II) adsorbent.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA contaminação da água por metais pesados como o chumbo causa muita preocupação, devido aos potenciais malefícios à saúde decorrentes da exposição a esse metal. Neste sentido, o principal objetivo deste trabalho foi o desenvolvimento de nanofibras compostas de óxido de cobre (II) (CuO), bem como a avaliação do seu desempenho como adsorvente de chumbo (II) em soluções aquosas. As nanofibras foram produzidas pela técnica de fiação centrífuga, utilizando o equipamento Forcespinning® e, em seguida, foram calcinadas para a obtenção das nanofibras compostas de CuO. As nanofibras foram caracterizadas antes e depois da etapa de calcinação, utilizando microscopia eletrônica de varredura (MEV), espectroscopia de infravermelho por transformada de fourier (FTIR), análise termogravimétrica (TGA), difração de raios-X (DRX) e Brunauer-Emmet-Teller (BET). O resultado do MEV mostrou que, após a etapa de calcinação, ocorreu uma transição na morfologia das fibras cilíndricas lisas para uma rede de fibras macroporosas. No resultado do FTIR, o espectro da nanofibra composta de CuO apresentou um pico em 528 cm-1, atribuído às vibrações de Cu-O, indicando a formação de CuO após a calcinação. Na análise termogravimétrica, a nanofibra composta de CuO apresentou perda de massa de 15,78% à medida que a temperatura foi elevada de 25 para 999,6 ºC, indicando a boa estabilidade térmica do material. Na análise de DRX, a nanofibra composta de CuO apresentou picos de difração correspondentes à estrutura cristalina monoclínica de CuO. Os resultados da análise de superfície BET indicaram uma redução da área de 36,18 m² g-1 para as nanofibras PAN/CuSO4 para 2,37 m² g-1 na nanofibra composta de CuO. Os estudos de adsorção foram realizados utilizando as nanofibras compostas de CuO como adsorvente e chumbo (II) como adsorvato em solução aquosa. Foram realizados ensaios para avaliar o efeito do pH, cinética de adsorção, equilíbrio de adsorção e os parâmetros termodinâmicos. A adsorção do chumbo (II) foi favorável em pH 5,8 e 298 K, com capacidade máxima de adsorção, conforme o modelo de Hill, de 151,34 mg g-1. O modelo que melhor descreveu os dados cinéticos foi o de pseudo-primeira ordem. O modelo que melhor ajustou os dados de equilíbrio foi o modelo de Hill. Os parâmetros termodinâmicos mostram que o processo de adsorção foi favorável, espontâneo e exotérmico. As nanofibras compostas de CuO apresentaram excelente estabilidade após dois ciclos de regeneração, sendo que no segundo ciclo manteve 97,51 % da sua capacidade de adsorção original. Assim, os resultados evidenciaram que as nanofibras compostas de CuO possuem um elevado potencial como adsorvente de chumbo (II).Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaTanabe, Eduardo Hiromitsuhttp://lattes.cnpq.br/9778700143605069Bertuol, Daniel AssumpçãoCancelier, AdrianoAlmeida, André Ricardo Felkl deSantos, Amábile Giotto dos2024-04-26T15:40:36Z2024-04-26T15:40:36Z2024-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31855ark:/26339/0013000007q08porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-04-26T15:40:36Zoai:repositorio.ufsm.br:1/31855Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-04-26T15:40:36Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
Production of nanofibers composed of CuO for removal of Pb(II) from aqueous solutions
title Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
spellingShingle Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
Santos, Amábile Giotto dos
Nanofibras poliméricas
Poliacrilonitrila
Fiação centrífuga
Calcinação
Chumbo
Adsorção
Polymeric nanofibers
Polyacrylonitrile
Centrifugal spinning
Calcination
Adsorption
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
title_full Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
title_fullStr Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
title_full_unstemmed Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
title_sort Produção de nanofibras compostas de CuO para remoção de chumbo (II) de soluções aquosas
author Santos, Amábile Giotto dos
author_facet Santos, Amábile Giotto dos
author_role author
dc.contributor.none.fl_str_mv Tanabe, Eduardo Hiromitsu
http://lattes.cnpq.br/9778700143605069
Bertuol, Daniel Assumpção
Cancelier, Adriano
Almeida, André Ricardo Felkl de
dc.contributor.author.fl_str_mv Santos, Amábile Giotto dos
dc.subject.por.fl_str_mv Nanofibras poliméricas
Poliacrilonitrila
Fiação centrífuga
Calcinação
Chumbo
Adsorção
Polymeric nanofibers
Polyacrylonitrile
Centrifugal spinning
Calcination
Adsorption
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Nanofibras poliméricas
Poliacrilonitrila
Fiação centrífuga
Calcinação
Chumbo
Adsorção
Polymeric nanofibers
Polyacrylonitrile
Centrifugal spinning
Calcination
Adsorption
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Water contamination by heavy metals such as lead is a major concern due to the potential health hazards associated with exposure to this metal. In this context, the main objective of this study was the development of nanofibers composed of copper oxide (II) (CuO) and the evaluation of their performance as adsorbents for lead (II) in aqueous solutions. The nanofibers were produced using the centrifugal spinning technique with the Forcespinning® equipment, followed by calcination to obtain the nanofibers composed of CuO. The nanofibers were characterized before and after the calcination step using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) analysis. The SEM results showed a transition in the morphology of the smooth cylindrical fibers to a network of macroporous fibers after the calcination step. The FTIR spectrum of the nanofibers composed of CuO exhibited a peak at 528 cm-1, attributed to Cu-O vibrations, indicating the formation of CuO after calcination. In thermogravimetric analysis, the nanofibers composed of CuO exhibited a mass loss of 15.78% as the temperature was increased from 25 to 999.6 ºC, indicating good thermal stability of the material. X-ray diffraction analysis showed diffraction peaks corresponding to the monoclinic crystalline structure of CuO in the nanofiber composed of CuO. The results of BET surface analysis indicated a reduction in surface area from 36.18 m² g-1 for PAN/CuSO4 nanofibers to 2.37 m² g-1 for nanofibers composed of CuO. Adsorption studies were conducted using the nanofibers composed of CuO as adsorbents and lead (II) as the adsorbate in aqueous solution. Experiments were performed to evaluate the effect of pH, adsorption kinetics, adsorption equilibrium, and thermodynamic parameters. The adsorption of lead (II) was favorable at pH 5.8 and 298 K, with a maximum adsorption capacity of 151.34 mg g-1 according to the Hill model. The model that best described the kinetic data was the pseudo-first-order model. The Hill model provided the best fit for the equilibrium data. The thermodynamic parameters indicate that the adsorption process was favorable, spontaneous, and exothermic. The nanofibers composed of CuO exhibited excellent stability after two regeneration cycles, maintaining 97.51% of their original adsorption capacity in the second cycle. Therefore, the results showed that nanofibers composed of CuO have a high potential as a lead (II) adsorbent.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-26T15:40:36Z
2024-04-26T15:40:36Z
2024-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/31855
dc.identifier.dark.fl_str_mv ark:/26339/0013000007q08
url http://repositorio.ufsm.br/handle/1/31855
identifier_str_mv ark:/26339/0013000007q08
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172300295634944