Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000wgz1 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/23561 |
Resumo: | Soy is one of the main national agricultural commodities, and, according to projections, Brazil will be, in 2020, the largest producer of this grain. As it is inserted in a highly competitive market, agricultural producers are looking for alternatives to obtain better productive and economic performance. Currently adopting precision agriculture (PA) is one of the options to obtain the best results in agricultural production, working with practices and technologies that allow cost reduction, avoiding waste and acting with precision in problems. Remote sensing (RS) is one of the PA techniques in which it obtains the reflectance of an object without having physical contact with it, making it possible to calculate the vegetation indices (VI), which highlight the specific vegetation behavior. There are several sensors available today, among them, multispectral cameras and active vegetation sensors. Multispectral cameras can be loaded on remotely piloted aircraft (RPA), which make it possible to obtain a high degree of detail, due to the high spatial and temporal resolution. Infrared (IR) sensors, on the other hand, provide the achievement of an IR acting at field level. Thus, the objective was, with the use of a Sequoia multispectral camera embedded in an RPA and also with the use of the GreenSeeker vegetation sensor, to assess biomass, plant height and productivity in soybean culture. The experiment was carried out in the 2018/2019 harvest, in the experimental area of the Polytechnic College of Federal University of Santa Maria. To provide variability, three plant populations (12, 24 and 36 plants/m²) were used, in a randomized block design, with four replications. The surveys with Sequoia and GreenSeeker were carried out in stages V10, R3 and R5.3. In the same stages, biomass (kiln-dried) was collected, the height of the plants was measured and in R9, manual harvesting to measure productivity. Statistical analyzes were performed by Pearson's correlation between the VI (GNDVI, MPRI, NDRE and NDVI) and the variables biomass, plant height and productivity. The V10 was the stage in which the best results were observed, in which all VI of both sensors achieved significant correlations (strong and very strong) with biomass and height. From R3 onwards, saturation of the VI was observed among plant populations/m². Even so, NDRE was the only VI to obtain a significant correlation with shoot biomass. in one of the reproductive stages (R3). In R5.3, there was no correlation between vegetation indexes and any agronomic variables evaluated. There was no significant correlation of productivity with any of the VI, in any phenological stage. The MPRI achieved a performance similar to the other multispectral VI in the V10 stage, which makes it possible to obtain a potential VI using a visible RGB camera. It is understood that the plasticity of the soybean plant and the greater canopy closure from R3 onwards made it difficult to obtain better results in the correlations. |
id |
UFSM_41a10958bcfe6890cb9b329ef555ed0d |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/23561 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotadaEvaluation of agronomic characteristics in soy by active vegetation sensor and multiespectral camera embarked in remotely piloted aircraftAgricultura de precisãoSensoriamento remotoÍndice de vegetaçãoSequoiaPhantom 4GreenSeekerPrecision agricultureRemote sensingVegetation indexCNPQ::CIENCIAS AGRARIAS::AGRONOMIASoy is one of the main national agricultural commodities, and, according to projections, Brazil will be, in 2020, the largest producer of this grain. As it is inserted in a highly competitive market, agricultural producers are looking for alternatives to obtain better productive and economic performance. Currently adopting precision agriculture (PA) is one of the options to obtain the best results in agricultural production, working with practices and technologies that allow cost reduction, avoiding waste and acting with precision in problems. Remote sensing (RS) is one of the PA techniques in which it obtains the reflectance of an object without having physical contact with it, making it possible to calculate the vegetation indices (VI), which highlight the specific vegetation behavior. There are several sensors available today, among them, multispectral cameras and active vegetation sensors. Multispectral cameras can be loaded on remotely piloted aircraft (RPA), which make it possible to obtain a high degree of detail, due to the high spatial and temporal resolution. Infrared (IR) sensors, on the other hand, provide the achievement of an IR acting at field level. Thus, the objective was, with the use of a Sequoia multispectral camera embedded in an RPA and also with the use of the GreenSeeker vegetation sensor, to assess biomass, plant height and productivity in soybean culture. The experiment was carried out in the 2018/2019 harvest, in the experimental area of the Polytechnic College of Federal University of Santa Maria. To provide variability, three plant populations (12, 24 and 36 plants/m²) were used, in a randomized block design, with four replications. The surveys with Sequoia and GreenSeeker were carried out in stages V10, R3 and R5.3. In the same stages, biomass (kiln-dried) was collected, the height of the plants was measured and in R9, manual harvesting to measure productivity. Statistical analyzes were performed by Pearson's correlation between the VI (GNDVI, MPRI, NDRE and NDVI) and the variables biomass, plant height and productivity. The V10 was the stage in which the best results were observed, in which all VI of both sensors achieved significant correlations (strong and very strong) with biomass and height. From R3 onwards, saturation of the VI was observed among plant populations/m². Even so, NDRE was the only VI to obtain a significant correlation with shoot biomass. in one of the reproductive stages (R3). In R5.3, there was no correlation between vegetation indexes and any agronomic variables evaluated. There was no significant correlation of productivity with any of the VI, in any phenological stage. The MPRI achieved a performance similar to the other multispectral VI in the V10 stage, which makes it possible to obtain a potential VI using a visible RGB camera. It is understood that the plasticity of the soybean plant and the greater canopy closure from R3 onwards made it difficult to obtain better results in the correlations.A soja é umas das principais commodities agrícolas nacionais, e, segundo projeções, o Brasil será, em 2020, o maior produtor desse grão. Por estar inserido em um mercado de alta competitividade, os produtores agrícolas buscam alternativas para obter melhor desempenho produtivo e econômico. Atualmente a adoção da agricultura de precisão é uma das opções para a obtenção de melhores resultados na produção agrícola, trabalhando com práticas e tecnologias que permitem redução de custos, evitando desperdícios e agindo com precisão nos problemas. O sensoriamento remoto (SR) é uma das técnicas da AP em que se obtém a reflectância de um objeto sem ter contato físico com o mesmo, possibilitando a partir disso calcular os índices de vegetação (IVs), os quais destacam o comportamento espectral da vegetação. Existem diversos sensores disponíveis atualmente, dentre eles, as câmeras multiespectrais e sensores ativos de vegetação. As câmeras multiespectrais podem ser embarcadas em aeronaves remotamente pilotadas (ARPs), as quais possibilitam obter alto grau de detalhamento, pela elevada resolução espacial e temporal. Já os sensores de IV propiciam a obtenção de um IV atuando em nível de campo. Dessa forma, objetivou-se, com a utilização de uma câmera multiespectral modelo Sequoia embarcada em uma ARP e também com o uso do sensor de vegetação GreenSeeker, avaliar a biomassa, estatura de planta e produtividade na cultura da soja. O experimento foi realizado na safra 2018/2019, na área experimental do Colégio Politécnico da Universidade Federal de Santa Maria. Para proporcionar variabilidade, foram utilizadas três populações de planta (12, 24 e 36 plantas/m²), em delineamento de blocos ao acaso, com quatro repetições. Os levantamentos com a Sequoia e o GreenSeeker foram realizados nos estádios V10, R3 e R5.3. Nos mesmos estádios, foram coletadas biomassa da parte aérea (seca em estufa), aferida a estatura das plantas e em R9, a colheita manual para aferir o rendimento de grãos. Foram realizadas análises estatísticas por correlação de Pearson entre os IV (GNDVI, MPRI, NDRE e NDVI) e as variáveis biomassa da parte aérea, estatura de planta e rendimento de grãos. O V10 foi o estádio no qual foram observados os melhores resultados, no qual todos os IV de ambos os sensores alcançaram correlações significativas (forte e muito forte) com a biomassa e estatura. A partir do R3, observou-se o início da saturação dos IV entre as populações de plantas/m². Mesmo assim, o NDRE foi o único IV a obter correlação significativa com a biomassa da parte aérea. em um dos estádios reprodutivos (R3). Em R5.3, não houve correlação dos IV com nenhuma variável agronômica avaliada. Não foram observadas correlações significativas entre rendimento de grãos e os IV, em nenhum estádio fenológico. O MPRI obteve desempenho semelhante aos demais IV multiespectrais no estádio V10, o que possibilita a obtenção de um potencial IV utilizando uma câmera visível RGB. Entende-se que a plasticidade da planta de soja e o maior fechamento do dossel a partir de R3 tenha dificultado a obtenção de melhores resultados nas correlações.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoColégio Politécnico da UFSMBredemeier, Christianhttp://lattes.cnpq.br/0364795290228832Amaral, Lúcio de PaulaVian, André LuísVareiro, Raphael Borgias2022-01-18T12:29:41Z2022-01-18T12:29:41Z2020-09-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23561ark:/26339/001300000wgz1porAttribution-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-01-18T12:31:11Zoai:repositorio.ufsm.br:1/23561Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-01-18T12:31:11Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada Evaluation of agronomic characteristics in soy by active vegetation sensor and multiespectral camera embarked in remotely piloted aircraft |
title |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada |
spellingShingle |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada Vareiro, Raphael Borgias Agricultura de precisão Sensoriamento remoto Índice de vegetação Sequoia Phantom 4 GreenSeeker Precision agriculture Remote sensing Vegetation index CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada |
title_full |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada |
title_fullStr |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada |
title_full_unstemmed |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada |
title_sort |
Avaliação de características agronômicas em soja por sensor ativo de vegetação e câmera multiespectral embarcada em aeronave remotamente pilotada |
author |
Vareiro, Raphael Borgias |
author_facet |
Vareiro, Raphael Borgias |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bredemeier, Christian http://lattes.cnpq.br/0364795290228832 Amaral, Lúcio de Paula Vian, André Luís |
dc.contributor.author.fl_str_mv |
Vareiro, Raphael Borgias |
dc.subject.por.fl_str_mv |
Agricultura de precisão Sensoriamento remoto Índice de vegetação Sequoia Phantom 4 GreenSeeker Precision agriculture Remote sensing Vegetation index CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Agricultura de precisão Sensoriamento remoto Índice de vegetação Sequoia Phantom 4 GreenSeeker Precision agriculture Remote sensing Vegetation index CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Soy is one of the main national agricultural commodities, and, according to projections, Brazil will be, in 2020, the largest producer of this grain. As it is inserted in a highly competitive market, agricultural producers are looking for alternatives to obtain better productive and economic performance. Currently adopting precision agriculture (PA) is one of the options to obtain the best results in agricultural production, working with practices and technologies that allow cost reduction, avoiding waste and acting with precision in problems. Remote sensing (RS) is one of the PA techniques in which it obtains the reflectance of an object without having physical contact with it, making it possible to calculate the vegetation indices (VI), which highlight the specific vegetation behavior. There are several sensors available today, among them, multispectral cameras and active vegetation sensors. Multispectral cameras can be loaded on remotely piloted aircraft (RPA), which make it possible to obtain a high degree of detail, due to the high spatial and temporal resolution. Infrared (IR) sensors, on the other hand, provide the achievement of an IR acting at field level. Thus, the objective was, with the use of a Sequoia multispectral camera embedded in an RPA and also with the use of the GreenSeeker vegetation sensor, to assess biomass, plant height and productivity in soybean culture. The experiment was carried out in the 2018/2019 harvest, in the experimental area of the Polytechnic College of Federal University of Santa Maria. To provide variability, three plant populations (12, 24 and 36 plants/m²) were used, in a randomized block design, with four replications. The surveys with Sequoia and GreenSeeker were carried out in stages V10, R3 and R5.3. In the same stages, biomass (kiln-dried) was collected, the height of the plants was measured and in R9, manual harvesting to measure productivity. Statistical analyzes were performed by Pearson's correlation between the VI (GNDVI, MPRI, NDRE and NDVI) and the variables biomass, plant height and productivity. The V10 was the stage in which the best results were observed, in which all VI of both sensors achieved significant correlations (strong and very strong) with biomass and height. From R3 onwards, saturation of the VI was observed among plant populations/m². Even so, NDRE was the only VI to obtain a significant correlation with shoot biomass. in one of the reproductive stages (R3). In R5.3, there was no correlation between vegetation indexes and any agronomic variables evaluated. There was no significant correlation of productivity with any of the VI, in any phenological stage. The MPRI achieved a performance similar to the other multispectral VI in the V10 stage, which makes it possible to obtain a potential VI using a visible RGB camera. It is understood that the plasticity of the soybean plant and the greater canopy closure from R3 onwards made it difficult to obtain better results in the correlations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-30 2022-01-18T12:29:41Z 2022-01-18T12:29:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/23561 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000wgz1 |
url |
http://repositorio.ufsm.br/handle/1/23561 |
identifier_str_mv |
ark:/26339/001300000wgz1 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Colégio Politécnico da UFSM |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Colégio Politécnico da UFSM |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172407741120512 |