Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/00130000189zp |
Texto Completo: | http://repositorio.ufsm.br/handle/1/32116 |
Resumo: | Computer simulation of buildings in a fire situation can help design passive and active protection measures for buildings, and support forensic investigation work in accidents. In this context, the present work aims to simulate the spread of a fire in an autonomous unit of a multifamily building using the Fire Dynamics Simulator (FDS) and Pyrosim programs. Thus, from the technical visit to the autonomous unit, documentary records were found and the case study was divided into two phases. Phase I corresponded to the analysis of the evidence collected using the scientific method NFPA 921 (2021) to investigate the fire scenario. In addition, Phase II carried out hypothesis testing of the scientific method with computer simulation in the Pyrosim and FDS programs. With the data, in the phase I followed the stage of developing hypotheses whose analysis of the data resulted in the fire sequence of the real fire. Then, in phase II, the thermal properties of the materials, combustion reactions were included and as results the meshes between 0.50m and 0.10m were studied. The results obtained defined a 0.50m mesh for simulations to analyze the input parameters, and a 0.20m mesh for the simulation of the final hypothesis. Furthermore, the results maintained the thermal properties defined in the literature and in the FDS, and define the occurrence of an explosion that corroborated the simulation with the analysis of Phase I. Subsequently, in the simulation of smoke propagation, the horizontal and the height of the smoke layer in the environment (in subways), observing the initial concentration of smoke in the upper layer of the rooms and later descending to the open windows or finished floor. The simulation reproduced the soot spilling onto the half-open window in the laundry room and no broken glass due to the high temperature reached in the living room. Another result was the comparison of equipment and materials that reached their melting or combustion point (partial or complete) with the temperature reached in the FDS simulation. Finally, the simulation had temperature variation per room, reaching 820°C in the living room, whose temperature converges with the carbonization of the wood and thermal breakage of the glass at 300°C, reducing the occurrence of flashover above 600°C in this room. environment. Furthermore, between 227.10°C and 245.90°C were obtained in bedroom 1, confirming the melting point reached between 225-245°C referring to the damaged air conditioning front panel. The same is observed regarding the shower's melting point of 134.15°C with the simulation temperatures between 402.7°C and 316.50°C in the bathroom. Finally, in bedroom 2, the simulation exceeded 160-170°C for the melting point of the polypropylene of the blind installation tape on the window, reaching between 214.50°C and 553.30°C. In view of the above, it is concluded that a computer simulation in Pyrosim and FDS carried out in Phase II, resulted in the smoke path and the temperatures reached converging with the real fire evidence collected in Phase I of the research. |
id |
UFSM_4440573e1f58b572be0d23b0b852b809 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/32116 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©Simulation of a real fire with the Fire Dynamics Simulator© (FDS) and Pyrosim© programsIncêndioSimulação computacionalFire Dinamycs SimulatorPyrosimFireComputer simulationCNPQ::ENGENHARIAS::ENGENHARIA CIVILComputer simulation of buildings in a fire situation can help design passive and active protection measures for buildings, and support forensic investigation work in accidents. In this context, the present work aims to simulate the spread of a fire in an autonomous unit of a multifamily building using the Fire Dynamics Simulator (FDS) and Pyrosim programs. Thus, from the technical visit to the autonomous unit, documentary records were found and the case study was divided into two phases. Phase I corresponded to the analysis of the evidence collected using the scientific method NFPA 921 (2021) to investigate the fire scenario. In addition, Phase II carried out hypothesis testing of the scientific method with computer simulation in the Pyrosim and FDS programs. With the data, in the phase I followed the stage of developing hypotheses whose analysis of the data resulted in the fire sequence of the real fire. Then, in phase II, the thermal properties of the materials, combustion reactions were included and as results the meshes between 0.50m and 0.10m were studied. The results obtained defined a 0.50m mesh for simulations to analyze the input parameters, and a 0.20m mesh for the simulation of the final hypothesis. Furthermore, the results maintained the thermal properties defined in the literature and in the FDS, and define the occurrence of an explosion that corroborated the simulation with the analysis of Phase I. Subsequently, in the simulation of smoke propagation, the horizontal and the height of the smoke layer in the environment (in subways), observing the initial concentration of smoke in the upper layer of the rooms and later descending to the open windows or finished floor. The simulation reproduced the soot spilling onto the half-open window in the laundry room and no broken glass due to the high temperature reached in the living room. Another result was the comparison of equipment and materials that reached their melting or combustion point (partial or complete) with the temperature reached in the FDS simulation. Finally, the simulation had temperature variation per room, reaching 820°C in the living room, whose temperature converges with the carbonization of the wood and thermal breakage of the glass at 300°C, reducing the occurrence of flashover above 600°C in this room. environment. Furthermore, between 227.10°C and 245.90°C were obtained in bedroom 1, confirming the melting point reached between 225-245°C referring to the damaged air conditioning front panel. The same is observed regarding the shower's melting point of 134.15°C with the simulation temperatures between 402.7°C and 316.50°C in the bathroom. Finally, in bedroom 2, the simulation exceeded 160-170°C for the melting point of the polypropylene of the blind installation tape on the window, reaching between 214.50°C and 553.30°C. In view of the above, it is concluded that a computer simulation in Pyrosim and FDS carried out in Phase II, resulted in the smoke path and the temperatures reached converging with the real fire evidence collected in Phase I of the research.A simulação computacional de edificações em situação de incêndio pode auxiliar o dimensionamento das medidas de proteção passiva e ativa de edificações, e subsidiar o trabalho de investigação forense em sinistros. Nesse contexto, o presente trabalho tem como objetivo simular a propagação de um incêndio em uma unidade autônoma de uma edificação multifamiliar por meio dos programas Fire Dynamics Simulator (FDS) e Pyrosim. Dessa forma, a partir da visita técnica na unidade autônoma foram coletados registros documentais e dividido o estudo de caso em duas fases. A Fase I correspondeu a análise das evidências coletadas com aplicação do método científico NFPA 921 (2021) para a investigação do cenário de incêndio. Complementarmente, a Fase II realizou o teste de hipóteses do método científico com a simulação computacional nos programas Pyrosim e FDS. Com os dados, na fase I prosseguiu-se à etapa de elaboração de hipóteses cuja a análise dos dados resultou na sequência de ignição do incêndio real. Em seguida, na fase II foram inseridas as propriedades térmicas dos materiais, reações de combustão e como resultados foram estudadas as malhas entre 0,50m e 0,10m. Os resultados obtibos definiram a malha 0,50m para simulações de análise dos parâmetros de entrada, e a malha 0,20m para a simulação da hipótese final. Adicionalmente, os resultados mantiveram as propriedades térmicas selecionadas da literatura e do FDS, e definiu a reação de combustão que corroborava na simulação com a análise da Fase I. Subsequentemente, na simulação da propagação de fumaça, foram analisadas as camadas de visibilidade horizontal e a altura de camada de fumaça no ambiente (em metros), observando-se a concentração inicial de fumaça na camada superior dos cômodos e posteriormente descendo até as janelas abertas ou piso acabado. A simulação reproduziu a fuligem que extravasou na janela semiaberta da lavanderia e no vidro quebrado devido à alta temperatura atingida na sala de estar. Outro resultado foi a comparação dos equipamentos e materiais que atingiram seu ponto de fusão ou combustão (parcial ou completa) com a temperatura atingida na simulação do FDS. Por fim, a simulação teve variação de temperatura por cômodo, sendo atingido 820°C na sala de estar, cuja temperatura converge com a carbonização da madeira e quebra térmica do vidro a 300°C, indicando ocorrência de flashover acima de 600°C nesse ambiente. Além disso, foi obtido entre 227,10°C e 245,90°C no dormitório 1, confirmando o ponto de fusão atingido entre 225-245°C referente ao painel frontal do ar condicionado danificado. O mesmo se observa sobre o ponto de fusão de 134,15°C do chuveiro com as temperaturas da simulação entre 402,7°C e 316,50°C no banheiro. Por último, no dormitório 2, a simulação superou 160-170°C para o ponto de fusão do polipropileno da fita de recolher da persiana na janela, atingindo entre 214,50°C a 553,30°C. Diante do exposto, conclui-se que a simulação computacional no Pyrosim e no FDS executada na Fase II, trouxe como resultados o trajeto de fumaça e as temperaturas atingidas convergente com as evidências do incêndio real coletadas na Fase I da pesquisa.Universidade Federal de Santa MariaBrasilEngenharia CivilUFSMPrograma de Pós-Graduação em Engenharia CivilCentro de TecnologiaVargas, Alexandre Silva dehttp://lattes.cnpq.br/6501148372644975Rodriguez, René QuispeLima, Rogério Cattelan Antocheves deAlmeida, João Emílio Santos Carvalho deSantos, Sabiana Gilsane Mühlen dos2024-07-02T13:09:08Z2024-07-02T13:09:08Z2024-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32116ark:/26339/00130000189zpporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-07-02T13:09:08Zoai:repositorio.ufsm.br:1/32116Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-02T13:09:08Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© Simulation of a real fire with the Fire Dynamics Simulator© (FDS) and Pyrosim© programs |
title |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© |
spellingShingle |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© Santos, Sabiana Gilsane Mühlen dos Incêndio Simulação computacional Fire Dinamycs Simulator Pyrosim Fire Computer simulation CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
title_short |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© |
title_full |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© |
title_fullStr |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© |
title_full_unstemmed |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© |
title_sort |
Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim© |
author |
Santos, Sabiana Gilsane Mühlen dos |
author_facet |
Santos, Sabiana Gilsane Mühlen dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vargas, Alexandre Silva de http://lattes.cnpq.br/6501148372644975 Rodriguez, René Quispe Lima, Rogério Cattelan Antocheves de Almeida, João Emílio Santos Carvalho de |
dc.contributor.author.fl_str_mv |
Santos, Sabiana Gilsane Mühlen dos |
dc.subject.por.fl_str_mv |
Incêndio Simulação computacional Fire Dinamycs Simulator Pyrosim Fire Computer simulation CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
topic |
Incêndio Simulação computacional Fire Dinamycs Simulator Pyrosim Fire Computer simulation CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
description |
Computer simulation of buildings in a fire situation can help design passive and active protection measures for buildings, and support forensic investigation work in accidents. In this context, the present work aims to simulate the spread of a fire in an autonomous unit of a multifamily building using the Fire Dynamics Simulator (FDS) and Pyrosim programs. Thus, from the technical visit to the autonomous unit, documentary records were found and the case study was divided into two phases. Phase I corresponded to the analysis of the evidence collected using the scientific method NFPA 921 (2021) to investigate the fire scenario. In addition, Phase II carried out hypothesis testing of the scientific method with computer simulation in the Pyrosim and FDS programs. With the data, in the phase I followed the stage of developing hypotheses whose analysis of the data resulted in the fire sequence of the real fire. Then, in phase II, the thermal properties of the materials, combustion reactions were included and as results the meshes between 0.50m and 0.10m were studied. The results obtained defined a 0.50m mesh for simulations to analyze the input parameters, and a 0.20m mesh for the simulation of the final hypothesis. Furthermore, the results maintained the thermal properties defined in the literature and in the FDS, and define the occurrence of an explosion that corroborated the simulation with the analysis of Phase I. Subsequently, in the simulation of smoke propagation, the horizontal and the height of the smoke layer in the environment (in subways), observing the initial concentration of smoke in the upper layer of the rooms and later descending to the open windows or finished floor. The simulation reproduced the soot spilling onto the half-open window in the laundry room and no broken glass due to the high temperature reached in the living room. Another result was the comparison of equipment and materials that reached their melting or combustion point (partial or complete) with the temperature reached in the FDS simulation. Finally, the simulation had temperature variation per room, reaching 820°C in the living room, whose temperature converges with the carbonization of the wood and thermal breakage of the glass at 300°C, reducing the occurrence of flashover above 600°C in this room. environment. Furthermore, between 227.10°C and 245.90°C were obtained in bedroom 1, confirming the melting point reached between 225-245°C referring to the damaged air conditioning front panel. The same is observed regarding the shower's melting point of 134.15°C with the simulation temperatures between 402.7°C and 316.50°C in the bathroom. Finally, in bedroom 2, the simulation exceeded 160-170°C for the melting point of the polypropylene of the blind installation tape on the window, reaching between 214.50°C and 553.30°C. In view of the above, it is concluded that a computer simulation in Pyrosim and FDS carried out in Phase II, resulted in the smoke path and the temperatures reached converging with the real fire evidence collected in Phase I of the research. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-02T13:09:08Z 2024-07-02T13:09:08Z 2024-04-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/32116 |
dc.identifier.dark.fl_str_mv |
ark:/26339/00130000189zp |
url |
http://repositorio.ufsm.br/handle/1/32116 |
identifier_str_mv |
ark:/26339/00130000189zp |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Civil UFSM Programa de Pós-Graduação em Engenharia Civil Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Civil UFSM Programa de Pós-Graduação em Engenharia Civil Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172471157948416 |