Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©

Detalhes bibliográficos
Autor(a) principal: Santos, Sabiana Gilsane Mühlen dos
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/00130000189zp
Texto Completo: http://repositorio.ufsm.br/handle/1/32116
Resumo: Computer simulation of buildings in a fire situation can help design passive and active protection measures for buildings, and support forensic investigation work in accidents. In this context, the present work aims to simulate the spread of a fire in an autonomous unit of a multifamily building using the Fire Dynamics Simulator (FDS) and Pyrosim programs. Thus, from the technical visit to the autonomous unit, documentary records were found and the case study was divided into two phases. Phase I corresponded to the analysis of the evidence collected using the scientific method NFPA 921 (2021) to investigate the fire scenario. In addition, Phase II carried out hypothesis testing of the scientific method with computer simulation in the Pyrosim and FDS programs. With the data, in the phase I followed the stage of developing hypotheses whose analysis of the data resulted in the fire sequence of the real fire. Then, in phase II, the thermal properties of the materials, combustion reactions were included and as results the meshes between 0.50m and 0.10m were studied. The results obtained defined a 0.50m mesh for simulations to analyze the input parameters, and a 0.20m mesh for the simulation of the final hypothesis. Furthermore, the results maintained the thermal properties defined in the literature and in the FDS, and define the occurrence of an explosion that corroborated the simulation with the analysis of Phase I. Subsequently, in the simulation of smoke propagation, the horizontal and the height of the smoke layer in the environment (in subways), observing the initial concentration of smoke in the upper layer of the rooms and later descending to the open windows or finished floor. The simulation reproduced the soot spilling onto the half-open window in the laundry room and no broken glass due to the high temperature reached in the living room. Another result was the comparison of equipment and materials that reached their melting or combustion point (partial or complete) with the temperature reached in the FDS simulation. Finally, the simulation had temperature variation per room, reaching 820°C in the living room, whose temperature converges with the carbonization of the wood and thermal breakage of the glass at 300°C, reducing the occurrence of flashover above 600°C in this room. environment. Furthermore, between 227.10°C and 245.90°C were obtained in bedroom 1, confirming the melting point reached between 225-245°C referring to the damaged air conditioning front panel. The same is observed regarding the shower's melting point of 134.15°C with the simulation temperatures between 402.7°C and 316.50°C in the bathroom. Finally, in bedroom 2, the simulation exceeded 160-170°C for the melting point of the polypropylene of the blind installation tape on the window, reaching between 214.50°C and 553.30°C. In view of the above, it is concluded that a computer simulation in Pyrosim and FDS carried out in Phase II, resulted in the smoke path and the temperatures reached converging with the real fire evidence collected in Phase I of the research.
id UFSM_4440573e1f58b572be0d23b0b852b809
oai_identifier_str oai:repositorio.ufsm.br:1/32116
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©Simulation of a real fire with the Fire Dynamics Simulator© (FDS) and Pyrosim© programsIncêndioSimulação computacionalFire Dinamycs SimulatorPyrosimFireComputer simulationCNPQ::ENGENHARIAS::ENGENHARIA CIVILComputer simulation of buildings in a fire situation can help design passive and active protection measures for buildings, and support forensic investigation work in accidents. In this context, the present work aims to simulate the spread of a fire in an autonomous unit of a multifamily building using the Fire Dynamics Simulator (FDS) and Pyrosim programs. Thus, from the technical visit to the autonomous unit, documentary records were found and the case study was divided into two phases. Phase I corresponded to the analysis of the evidence collected using the scientific method NFPA 921 (2021) to investigate the fire scenario. In addition, Phase II carried out hypothesis testing of the scientific method with computer simulation in the Pyrosim and FDS programs. With the data, in the phase I followed the stage of developing hypotheses whose analysis of the data resulted in the fire sequence of the real fire. Then, in phase II, the thermal properties of the materials, combustion reactions were included and as results the meshes between 0.50m and 0.10m were studied. The results obtained defined a 0.50m mesh for simulations to analyze the input parameters, and a 0.20m mesh for the simulation of the final hypothesis. Furthermore, the results maintained the thermal properties defined in the literature and in the FDS, and define the occurrence of an explosion that corroborated the simulation with the analysis of Phase I. Subsequently, in the simulation of smoke propagation, the horizontal and the height of the smoke layer in the environment (in subways), observing the initial concentration of smoke in the upper layer of the rooms and later descending to the open windows or finished floor. The simulation reproduced the soot spilling onto the half-open window in the laundry room and no broken glass due to the high temperature reached in the living room. Another result was the comparison of equipment and materials that reached their melting or combustion point (partial or complete) with the temperature reached in the FDS simulation. Finally, the simulation had temperature variation per room, reaching 820°C in the living room, whose temperature converges with the carbonization of the wood and thermal breakage of the glass at 300°C, reducing the occurrence of flashover above 600°C in this room. environment. Furthermore, between 227.10°C and 245.90°C were obtained in bedroom 1, confirming the melting point reached between 225-245°C referring to the damaged air conditioning front panel. The same is observed regarding the shower's melting point of 134.15°C with the simulation temperatures between 402.7°C and 316.50°C in the bathroom. Finally, in bedroom 2, the simulation exceeded 160-170°C for the melting point of the polypropylene of the blind installation tape on the window, reaching between 214.50°C and 553.30°C. In view of the above, it is concluded that a computer simulation in Pyrosim and FDS carried out in Phase II, resulted in the smoke path and the temperatures reached converging with the real fire evidence collected in Phase I of the research.A simulação computacional de edificações em situação de incêndio pode auxiliar o dimensionamento das medidas de proteção passiva e ativa de edificações, e subsidiar o trabalho de investigação forense em sinistros. Nesse contexto, o presente trabalho tem como objetivo simular a propagação de um incêndio em uma unidade autônoma de uma edificação multifamiliar por meio dos programas Fire Dynamics Simulator (FDS) e Pyrosim. Dessa forma, a partir da visita técnica na unidade autônoma foram coletados registros documentais e dividido o estudo de caso em duas fases. A Fase I correspondeu a análise das evidências coletadas com aplicação do método científico NFPA 921 (2021) para a investigação do cenário de incêndio. Complementarmente, a Fase II realizou o teste de hipóteses do método científico com a simulação computacional nos programas Pyrosim e FDS. Com os dados, na fase I prosseguiu-se à etapa de elaboração de hipóteses cuja a análise dos dados resultou na sequência de ignição do incêndio real. Em seguida, na fase II foram inseridas as propriedades térmicas dos materiais, reações de combustão e como resultados foram estudadas as malhas entre 0,50m e 0,10m. Os resultados obtibos definiram a malha 0,50m para simulações de análise dos parâmetros de entrada, e a malha 0,20m para a simulação da hipótese final. Adicionalmente, os resultados mantiveram as propriedades térmicas selecionadas da literatura e do FDS, e definiu a reação de combustão que corroborava na simulação com a análise da Fase I. Subsequentemente, na simulação da propagação de fumaça, foram analisadas as camadas de visibilidade horizontal e a altura de camada de fumaça no ambiente (em metros), observando-se a concentração inicial de fumaça na camada superior dos cômodos e posteriormente descendo até as janelas abertas ou piso acabado. A simulação reproduziu a fuligem que extravasou na janela semiaberta da lavanderia e no vidro quebrado devido à alta temperatura atingida na sala de estar. Outro resultado foi a comparação dos equipamentos e materiais que atingiram seu ponto de fusão ou combustão (parcial ou completa) com a temperatura atingida na simulação do FDS. Por fim, a simulação teve variação de temperatura por cômodo, sendo atingido 820°C na sala de estar, cuja temperatura converge com a carbonização da madeira e quebra térmica do vidro a 300°C, indicando ocorrência de flashover acima de 600°C nesse ambiente. Além disso, foi obtido entre 227,10°C e 245,90°C no dormitório 1, confirmando o ponto de fusão atingido entre 225-245°C referente ao painel frontal do ar condicionado danificado. O mesmo se observa sobre o ponto de fusão de 134,15°C do chuveiro com as temperaturas da simulação entre 402,7°C e 316,50°C no banheiro. Por último, no dormitório 2, a simulação superou 160-170°C para o ponto de fusão do polipropileno da fita de recolher da persiana na janela, atingindo entre 214,50°C a 553,30°C. Diante do exposto, conclui-se que a simulação computacional no Pyrosim e no FDS executada na Fase II, trouxe como resultados o trajeto de fumaça e as temperaturas atingidas convergente com as evidências do incêndio real coletadas na Fase I da pesquisa.Universidade Federal de Santa MariaBrasilEngenharia CivilUFSMPrograma de Pós-Graduação em Engenharia CivilCentro de TecnologiaVargas, Alexandre Silva dehttp://lattes.cnpq.br/6501148372644975Rodriguez, René QuispeLima, Rogério Cattelan Antocheves deAlmeida, João Emílio Santos Carvalho deSantos, Sabiana Gilsane Mühlen dos2024-07-02T13:09:08Z2024-07-02T13:09:08Z2024-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/32116ark:/26339/00130000189zpporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-07-02T13:09:08Zoai:repositorio.ufsm.br:1/32116Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-02T13:09:08Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
Simulation of a real fire with the Fire Dynamics Simulator© (FDS) and Pyrosim© programs
title Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
spellingShingle Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
Santos, Sabiana Gilsane Mühlen dos
Incêndio
Simulação computacional
Fire Dinamycs Simulator
Pyrosim
Fire
Computer simulation
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL
title_short Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
title_full Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
title_fullStr Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
title_full_unstemmed Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
title_sort Simulação de um incêndio real com os programas Fire Dynamics Simulator© (FDS) e Pyrosim©
author Santos, Sabiana Gilsane Mühlen dos
author_facet Santos, Sabiana Gilsane Mühlen dos
author_role author
dc.contributor.none.fl_str_mv Vargas, Alexandre Silva de
http://lattes.cnpq.br/6501148372644975
Rodriguez, René Quispe
Lima, Rogério Cattelan Antocheves de
Almeida, João Emílio Santos Carvalho de
dc.contributor.author.fl_str_mv Santos, Sabiana Gilsane Mühlen dos
dc.subject.por.fl_str_mv Incêndio
Simulação computacional
Fire Dinamycs Simulator
Pyrosim
Fire
Computer simulation
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL
topic Incêndio
Simulação computacional
Fire Dinamycs Simulator
Pyrosim
Fire
Computer simulation
CNPQ::ENGENHARIAS::ENGENHARIA CIVIL
description Computer simulation of buildings in a fire situation can help design passive and active protection measures for buildings, and support forensic investigation work in accidents. In this context, the present work aims to simulate the spread of a fire in an autonomous unit of a multifamily building using the Fire Dynamics Simulator (FDS) and Pyrosim programs. Thus, from the technical visit to the autonomous unit, documentary records were found and the case study was divided into two phases. Phase I corresponded to the analysis of the evidence collected using the scientific method NFPA 921 (2021) to investigate the fire scenario. In addition, Phase II carried out hypothesis testing of the scientific method with computer simulation in the Pyrosim and FDS programs. With the data, in the phase I followed the stage of developing hypotheses whose analysis of the data resulted in the fire sequence of the real fire. Then, in phase II, the thermal properties of the materials, combustion reactions were included and as results the meshes between 0.50m and 0.10m were studied. The results obtained defined a 0.50m mesh for simulations to analyze the input parameters, and a 0.20m mesh for the simulation of the final hypothesis. Furthermore, the results maintained the thermal properties defined in the literature and in the FDS, and define the occurrence of an explosion that corroborated the simulation with the analysis of Phase I. Subsequently, in the simulation of smoke propagation, the horizontal and the height of the smoke layer in the environment (in subways), observing the initial concentration of smoke in the upper layer of the rooms and later descending to the open windows or finished floor. The simulation reproduced the soot spilling onto the half-open window in the laundry room and no broken glass due to the high temperature reached in the living room. Another result was the comparison of equipment and materials that reached their melting or combustion point (partial or complete) with the temperature reached in the FDS simulation. Finally, the simulation had temperature variation per room, reaching 820°C in the living room, whose temperature converges with the carbonization of the wood and thermal breakage of the glass at 300°C, reducing the occurrence of flashover above 600°C in this room. environment. Furthermore, between 227.10°C and 245.90°C were obtained in bedroom 1, confirming the melting point reached between 225-245°C referring to the damaged air conditioning front panel. The same is observed regarding the shower's melting point of 134.15°C with the simulation temperatures between 402.7°C and 316.50°C in the bathroom. Finally, in bedroom 2, the simulation exceeded 160-170°C for the melting point of the polypropylene of the blind installation tape on the window, reaching between 214.50°C and 553.30°C. In view of the above, it is concluded that a computer simulation in Pyrosim and FDS carried out in Phase II, resulted in the smoke path and the temperatures reached converging with the real fire evidence collected in Phase I of the research.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-02T13:09:08Z
2024-07-02T13:09:08Z
2024-04-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/32116
dc.identifier.dark.fl_str_mv ark:/26339/00130000189zp
url http://repositorio.ufsm.br/handle/1/32116
identifier_str_mv ark:/26339/00130000189zp
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Civil
UFSM
Programa de Pós-Graduação em Engenharia Civil
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Civil
UFSM
Programa de Pós-Graduação em Engenharia Civil
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172471157948416