Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O

Detalhes bibliográficos
Autor(a) principal: Mesquita, Mateus da Silva
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000s8x7
Texto Completo: http://repositorio.ufsm.br/handle/1/31386
Resumo: The treatment of formation water still represents one of the greatest challenges in the oil industry. Among the various pollutants found in produced water, phenol is of particular concern, due to its high toxicity. The aim of this work was to synthesize a Eucalyptus saligna sawdust biochar activated with NiCl2 in fixed bed slow pyrolysis, followed by evaluation of its capacity for the adsorption of phenol. When comparing the results of chemically activated adsorbent with a pristine adsorbent, the higher efficiency in phenol removal was observed with biochar activated with NiCl2. The noteworthy widening of pores on average and the acquisition of new and/or intensified functional groups (mostly containing O) justified the enhanced adsorption. Both adsorbents were characterized using scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffractometry, nitrogen porosimetry using the Brunauer-Emmett-Teller and Barrett, Joyner e Halenda method. The adsorption capacity of the activated biochar with NiCl2 varied slightly (Q=21 a 21.4 mg.g-1 ) at different pH of the phenolic solution (2 to 9). The ideal dosage of biochar obtained was 1 g.L-1 . The adsorption kinetics could be fitted using the Elovich model (R²adj.=0.99, MRE=2.412%), suggesting the attainment of equilibrium at 240 minutes through chemical adsorption on a heterogeneous (irregular) surface. The adsorption isotherms confirmed that multiple layers of the adsorbent were involved in phenol removal, justified by the excellent fits of the Redlich-Peterson (R²adj.=0.998, MRE=1.46%) and Freundlich models (R²adj.=0.995, MRE=3.74%). The maximum adsorption capacity of the activated biochar with NiCl2 obtained was 76.65 mg.g-1 (C0=200mg.L-1 ). Furthermore, thermodynamic evaluation indicated that the adsorption was exothermic (ΔH⁰=-54.71 kJ.mol-1 ), spontaneous (∆G 0=-33.51 kJ.mol-1 ), ordered (ΔS 0=-0.07 kJ.mol-1K -1 ), justified by the Van’t Hoff equation with dimensionless Ke 0 (Redlich-Peterson: R²adj.=0.859). Interestingly, physical interaction mechanisms predominated during thermodynamics. Therefore, a two-stage adsorption system was suggested (1st: physical 'Van der Waals forces' and 2nd: chemical ' electron donor-acceptor complex'). The study of ionic strength was also conducted, varying NaCl from 0 to 1000 mM in solution, with no significant interferences observed. Finally, desorption experiments were carried out through thermal treatment in an inert atmosphere. After three regeneration cycles, the efficiency remained close to 70%. Regeneration through eluents was not efficient, possibly due to the strong chemical bonds between the adsorbent and the adsorbate.
id UFSM_45fc326ec08049bb40092ee28725a5e3
oai_identifier_str oai:repositorio.ufsm.br:1/31386
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2OAdsorption of phenol using Eucalyptus saligna biochar activated with NiCl2.6H2OTratamento de água residuáriaFenolAdsorçãoNíquelBiocarvãoWastewater treatmentPhenolAdsorptionNickelBiocharCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAThe treatment of formation water still represents one of the greatest challenges in the oil industry. Among the various pollutants found in produced water, phenol is of particular concern, due to its high toxicity. The aim of this work was to synthesize a Eucalyptus saligna sawdust biochar activated with NiCl2 in fixed bed slow pyrolysis, followed by evaluation of its capacity for the adsorption of phenol. When comparing the results of chemically activated adsorbent with a pristine adsorbent, the higher efficiency in phenol removal was observed with biochar activated with NiCl2. The noteworthy widening of pores on average and the acquisition of new and/or intensified functional groups (mostly containing O) justified the enhanced adsorption. Both adsorbents were characterized using scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffractometry, nitrogen porosimetry using the Brunauer-Emmett-Teller and Barrett, Joyner e Halenda method. The adsorption capacity of the activated biochar with NiCl2 varied slightly (Q=21 a 21.4 mg.g-1 ) at different pH of the phenolic solution (2 to 9). The ideal dosage of biochar obtained was 1 g.L-1 . The adsorption kinetics could be fitted using the Elovich model (R²adj.=0.99, MRE=2.412%), suggesting the attainment of equilibrium at 240 minutes through chemical adsorption on a heterogeneous (irregular) surface. The adsorption isotherms confirmed that multiple layers of the adsorbent were involved in phenol removal, justified by the excellent fits of the Redlich-Peterson (R²adj.=0.998, MRE=1.46%) and Freundlich models (R²adj.=0.995, MRE=3.74%). The maximum adsorption capacity of the activated biochar with NiCl2 obtained was 76.65 mg.g-1 (C0=200mg.L-1 ). Furthermore, thermodynamic evaluation indicated that the adsorption was exothermic (ΔH⁰=-54.71 kJ.mol-1 ), spontaneous (∆G 0=-33.51 kJ.mol-1 ), ordered (ΔS 0=-0.07 kJ.mol-1K -1 ), justified by the Van’t Hoff equation with dimensionless Ke 0 (Redlich-Peterson: R²adj.=0.859). Interestingly, physical interaction mechanisms predominated during thermodynamics. Therefore, a two-stage adsorption system was suggested (1st: physical 'Van der Waals forces' and 2nd: chemical ' electron donor-acceptor complex'). The study of ionic strength was also conducted, varying NaCl from 0 to 1000 mM in solution, with no significant interferences observed. Finally, desorption experiments were carried out through thermal treatment in an inert atmosphere. After three regeneration cycles, the efficiency remained close to 70%. Regeneration through eluents was not efficient, possibly due to the strong chemical bonds between the adsorbent and the adsorbate.Atualmente, o tratamento da água de formação é um dos maiores desafios da indústria petrolífera. Dentre os diversos poluentes presentes na água produzida, o fenol é um dos mais preocupantes devido à sua toxicidade quando em excesso. Assim, este estudo teve por objetivo sintetizar um biocarvão de serragem de Eucalyptus saligna ativado com NiCl2 em pirólise lenta de leito fixo e avaliar sua capacidade de adsorção de fenol. Ao comparar os resultados do adsorvente ativado quimicamente com um adsorvente puro, notou-se a maior eficiência de remoção de fenol através do biocarvão ativado com NiCl2. Notavelmente o alargamento médio dos poros e a obtenção de grupos funcionais novos e/ou intensificados (principalmente contendo O) justificaram a melhor adsorção. Ambos os adsorventes foram caracterizados usando espectroscopia por energia dispersiva, microscopia eletrônica de varredura, espectroscopia no infravermelho por transformada de Fourier, difratômetria de raios-X e porosimetria de nitrogênio por meio do método Brunauer-Emmet-Teller e Barrett, Joyner e Halenda. A capacidade de adsorção do biocarvão ativado-NiCl2 variou pouco (Q=21 a 21.4 mg.g-1 ) em diferentes faixas de pH da solução fenólica (2 a 9). Os testes de dosagem ideal do biocarvão indicaram o valor de 1 g.L-1 . Quanto aos testes cinéticos da adsorção, estes se ajustaram ao modelo de Elovich (R²adj.=0.99, MRE=2.412%), sugerindo a obtenção do equilíbrio aos 240 minutos, através de uma adsorção química em superfície heterogênea (irregular). As isotermas confirmaram que múltiplas camadas do adsorvente tenham atuado para a remoção do fenol e isto se justificou pelas ótimas adaptações dos modelos de RedlichPeterson (R²adj.=0.998, MRE=1.46%) e Freundlich (R²adj.=0.995, MRE=3.74%). A capacidade máxima de adsorção obtida pelo biocarvão ativado-NiCl2 foi igual a 76.65 mg.g-1 (C0=200mg.L-1 ). Além disto, o estudo termodinâmico sugeriu que a adsorção apresentou comportamento exotérmico (ΔH⁰=-54.71 kJ.mol-1 ), espontâneo (∆G 0=-33.51 kJ.mol-1 , quando T=303.15K) e ordenado (ΔS0=-0.07 kJ.mol-1K -1 ), justificados pela equação de Van’t Hoff com Ke 0 adimensional (Redlich-Peterson: R²adj.=0.859). Curiosamente os mecanismos de interações físicas predominaram durante a termodinâmica. Portanto, foi sugerido um sistema de adsorção em dois estágios (1°: físico ‘Forças de Van der Waals’ e 2°: químico ‘Complexo doadoraceitador de elétrons’). Também efetuou-se o estudo da força iônica quando NaCl variou de 0 a 1000 mM em solução. Não observou-se interferências importantes neste teste. Por fim, os experimentos de dessorção foram realizados por tratamento térmico em atmosfera inerte. Após três ciclos de regeneração a eficiência se manteve próxima a 70%. Através de eluentes a regeneração não foi eficiente, possivelmente devido às fortes ligações químicas entre o adsorvente e o adsorbato.Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaBertuol, Daniel Assumpçãohttp://lattes.cnpq.br/7979212992364682Tanabe, Eduardo HiromitsuReisdörfer, GustavoSilva, Maurício Dalla Costa Rodrigues daMesquita, Mateus da Silva2024-02-02T15:42:22Z2024-02-02T15:42:22Z2023-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31386ark:/26339/001300000s8x7porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-02-02T15:42:22Zoai:repositorio.ufsm.br:1/31386Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-02-02T15:42:22Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
Adsorption of phenol using Eucalyptus saligna biochar activated with NiCl2.6H2O
title Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
spellingShingle Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
Mesquita, Mateus da Silva
Tratamento de água residuária
Fenol
Adsorção
Níquel
Biocarvão
Wastewater treatment
Phenol
Adsorption
Nickel
Biochar
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
title_full Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
title_fullStr Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
title_full_unstemmed Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
title_sort Adsorção de fenol por biocarvão de Eucalyptus saligna ativado com NiCl2.6H2O
author Mesquita, Mateus da Silva
author_facet Mesquita, Mateus da Silva
author_role author
dc.contributor.none.fl_str_mv Bertuol, Daniel Assumpção
http://lattes.cnpq.br/7979212992364682
Tanabe, Eduardo Hiromitsu
Reisdörfer, Gustavo
Silva, Maurício Dalla Costa Rodrigues da
dc.contributor.author.fl_str_mv Mesquita, Mateus da Silva
dc.subject.por.fl_str_mv Tratamento de água residuária
Fenol
Adsorção
Níquel
Biocarvão
Wastewater treatment
Phenol
Adsorption
Nickel
Biochar
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Tratamento de água residuária
Fenol
Adsorção
Níquel
Biocarvão
Wastewater treatment
Phenol
Adsorption
Nickel
Biochar
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description The treatment of formation water still represents one of the greatest challenges in the oil industry. Among the various pollutants found in produced water, phenol is of particular concern, due to its high toxicity. The aim of this work was to synthesize a Eucalyptus saligna sawdust biochar activated with NiCl2 in fixed bed slow pyrolysis, followed by evaluation of its capacity for the adsorption of phenol. When comparing the results of chemically activated adsorbent with a pristine adsorbent, the higher efficiency in phenol removal was observed with biochar activated with NiCl2. The noteworthy widening of pores on average and the acquisition of new and/or intensified functional groups (mostly containing O) justified the enhanced adsorption. Both adsorbents were characterized using scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffractometry, nitrogen porosimetry using the Brunauer-Emmett-Teller and Barrett, Joyner e Halenda method. The adsorption capacity of the activated biochar with NiCl2 varied slightly (Q=21 a 21.4 mg.g-1 ) at different pH of the phenolic solution (2 to 9). The ideal dosage of biochar obtained was 1 g.L-1 . The adsorption kinetics could be fitted using the Elovich model (R²adj.=0.99, MRE=2.412%), suggesting the attainment of equilibrium at 240 minutes through chemical adsorption on a heterogeneous (irregular) surface. The adsorption isotherms confirmed that multiple layers of the adsorbent were involved in phenol removal, justified by the excellent fits of the Redlich-Peterson (R²adj.=0.998, MRE=1.46%) and Freundlich models (R²adj.=0.995, MRE=3.74%). The maximum adsorption capacity of the activated biochar with NiCl2 obtained was 76.65 mg.g-1 (C0=200mg.L-1 ). Furthermore, thermodynamic evaluation indicated that the adsorption was exothermic (ΔH⁰=-54.71 kJ.mol-1 ), spontaneous (∆G 0=-33.51 kJ.mol-1 ), ordered (ΔS 0=-0.07 kJ.mol-1K -1 ), justified by the Van’t Hoff equation with dimensionless Ke 0 (Redlich-Peterson: R²adj.=0.859). Interestingly, physical interaction mechanisms predominated during thermodynamics. Therefore, a two-stage adsorption system was suggested (1st: physical 'Van der Waals forces' and 2nd: chemical ' electron donor-acceptor complex'). The study of ionic strength was also conducted, varying NaCl from 0 to 1000 mM in solution, with no significant interferences observed. Finally, desorption experiments were carried out through thermal treatment in an inert atmosphere. After three regeneration cycles, the efficiency remained close to 70%. Regeneration through eluents was not efficient, possibly due to the strong chemical bonds between the adsorbent and the adsorbate.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-30
2024-02-02T15:42:22Z
2024-02-02T15:42:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/31386
dc.identifier.dark.fl_str_mv ark:/26339/001300000s8x7
url http://repositorio.ufsm.br/handle/1/31386
identifier_str_mv ark:/26339/001300000s8x7
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172389557764096