Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto

Detalhes bibliográficos
Autor(a) principal: Chechi, Leonardo
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000nt8m
Texto Completo: http://repositorio.ufsm.br/handle/1/19701
Resumo: The increase in world population has resulted in increased demand for food, requiring increased crop productivity. Water stress is the major limiting factor for grain yield of spring-summer crops in Rio Grande do Sul, frequently requiring supplemental irrigation, especially in the most critical stages of water stress. In order to increase productivity and inputs use efficiency, current methodologies need to be improved and new alternatives sought to allow more accurate assessments of crop water requirement as well as crop response to water availability. In this way, the main objective of this work was to improve the estimation of the crop evapotranspiration (ETc) for soybean and corn under subtropical humid conditions by combining SIMDualKc soil water balance model and vegetation indices derived from remote sensing. In addition, the study sought to access soil evaporation (Es) and actual crop transpiration (Tc act), and relate Tc act to grain yield by applying empirical functions for corn and soybean crops in Rio Grande do Sul. The study methodology was composed of four steps: (i) calibration and validation of the SIMDualKc model; (ii) calibration and validation of the fraction of soil covered (fc) and leaf area index (LAI) estimated with NDVI; (iii) validation of SIMDualKc with fc and LAI derived from NDVI; and (iv) application S1 and S2 phases of the SIMDualKc-Stewart model to estimate grain yield. Steps i and ii consisted of field experiments carried out in irrigated and rainfed areas, in 2018/19 crop season, in the Depressão Central region of RS, with corn (first crop) and soybean (second crop). The areas used in step iii are farm areas and located in the major producing regions of Rio Grande do Sul state, including the Depressão Central, the Planalto Médio and Missões during the 2017/18 and 2018/19 crop seasons. In each farm a central pivot irrigated area and a rainfed area were used, when available. For stage iv, all study areas were used for calibration and validation of the SIMDualKc-Stewart model. The use of the SIMDualKc model combined with the NDVI vegetation index was efficient in simulating soil water balance by partitioning ETc act into Es and Tc act. The efficiency of the simulation was proved by the application of statistical indicators, with RMSE ranging from 2.96 to 6.52% of TAW among all soybean and corn crops areas. For the SIMDualKc-Stewart model the S2 phase was more accurate for grain yield estimation, where the RMSE was of 0.32 and 0.86 Mg ha-1, for soybean and corn, respectively. Thus, the methodology presented in the study proved to be efficient for the estimation of ETc act and soil water balance, as well as the crop response to water availability for soybean and maize grown in the main producing regions of Rio Grande do Sul state, in diversified conditions of soil and climate.
id UFSM_460fd076041034e488a8ea837824119e
oai_identifier_str oai:repositorio.ufsm.br:1/19701
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remotoMonitoring water requirement and grain yield for soybean and maize through combination of soil water balance model and remote sensingSIMDualKcStewartEvapotranspirationWater deficitEvapotranspiraçãoDéficit hídricoCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAThe increase in world population has resulted in increased demand for food, requiring increased crop productivity. Water stress is the major limiting factor for grain yield of spring-summer crops in Rio Grande do Sul, frequently requiring supplemental irrigation, especially in the most critical stages of water stress. In order to increase productivity and inputs use efficiency, current methodologies need to be improved and new alternatives sought to allow more accurate assessments of crop water requirement as well as crop response to water availability. In this way, the main objective of this work was to improve the estimation of the crop evapotranspiration (ETc) for soybean and corn under subtropical humid conditions by combining SIMDualKc soil water balance model and vegetation indices derived from remote sensing. In addition, the study sought to access soil evaporation (Es) and actual crop transpiration (Tc act), and relate Tc act to grain yield by applying empirical functions for corn and soybean crops in Rio Grande do Sul. The study methodology was composed of four steps: (i) calibration and validation of the SIMDualKc model; (ii) calibration and validation of the fraction of soil covered (fc) and leaf area index (LAI) estimated with NDVI; (iii) validation of SIMDualKc with fc and LAI derived from NDVI; and (iv) application S1 and S2 phases of the SIMDualKc-Stewart model to estimate grain yield. Steps i and ii consisted of field experiments carried out in irrigated and rainfed areas, in 2018/19 crop season, in the Depressão Central region of RS, with corn (first crop) and soybean (second crop). The areas used in step iii are farm areas and located in the major producing regions of Rio Grande do Sul state, including the Depressão Central, the Planalto Médio and Missões during the 2017/18 and 2018/19 crop seasons. In each farm a central pivot irrigated area and a rainfed area were used, when available. For stage iv, all study areas were used for calibration and validation of the SIMDualKc-Stewart model. The use of the SIMDualKc model combined with the NDVI vegetation index was efficient in simulating soil water balance by partitioning ETc act into Es and Tc act. The efficiency of the simulation was proved by the application of statistical indicators, with RMSE ranging from 2.96 to 6.52% of TAW among all soybean and corn crops areas. For the SIMDualKc-Stewart model the S2 phase was more accurate for grain yield estimation, where the RMSE was of 0.32 and 0.86 Mg ha-1, for soybean and corn, respectively. Thus, the methodology presented in the study proved to be efficient for the estimation of ETc act and soil water balance, as well as the crop response to water availability for soybean and maize grown in the main producing regions of Rio Grande do Sul state, in diversified conditions of soil and climate.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO aumento da população mundial tem resultado no aumento da demanda por alimentos, exigindo aumento da produtividade das culturas agrícolas. O déficit hídrico é o maior causador da redução no rendimento de grãos das culturas de primavera-verão no Rio Grande do Sul, necessitando-se de irrigações suplementares frequentemente, especialmente nos estádios mais críticos ao estresse hídrico. Para aumentar a produtividade e a eficiência dos recursos utilizados na produção agrícola, se faz necessário melhorar as metodologias existentes e procurar novas alternativas, que permitam avaliações mais precisas da demanda hídrica das culturas, bem como, das respostas das culturas à disponibilidade hídrica. Assim, o principal objetivo deste trabalho foi o de melhorar a estimativa da evapotranspiração das culturas (ETc) da soja e do milho em condições subtropicais úmidas mediante a combinação de modelo de balanço hídrico do solo SIMDualKc e índices de vegetação derivados do sensoriamento remoto. O trabalho visa ainda fracionar a evaporação do solo (Es) e transpiração atual das culturas (Tc act) e relacionar a Tc act com o rendimento a partir de funções empíricas para as culturas do milho e soja no Rio Grande do Sul. O presente estudo foi composto de quatro etapas: (i) calibração e validação do modelo SIMDualKc; (ii) calibração e validação da estimativa da fração de cobertura (fc) e do índice de área foliar (IAF) com o NDVI; (iii) validação do SIMDualKc com fc e IAF a partir do NDVI; e (iv) aplicação das fases S1 e S2 do modelo SIMDualKc-Stewart para a estimativa do rendimento de grãos. As etapas i e ii constituíram-se de experimentos de campo, realizados em área irrigada e de sequeiro, no ano agrícola de 2018/19, na Depressão Central do RS, com as culturas milho (safra) e soja (safrinha). Para a etapa iii utilizou-se áreas comerciais irrigadas e de sequeiro, das principais regiões produtoras do Rio Grande do Sul, incluindo a Depressão Central, o Planalto Médio e as Missões, relativos aos anos agrícolas 2017/18 e 2018/19. A etapa iv consistiu da calibração e validação do modelo SIMDualKc-Stewart para todas as áreas do estudo. A utilização do modelo SIMDualKc combinado com o índice de vegetação NDVI foi eficiente em simular o balanço hídrico do solo, particionando a evapotranspiração em Es e Tc act. A eficiência da simulação foi comprovada pela aplicação de indicadores estatísticos, apresentado RMSE variando de 2,96 a 6,52% da TAW para a soja e milho. Para o modelo SIMDualKc-Stewart, a fase S2 foi mais precisa para estimar o rendimento de grãos, apresentando um RMSE de 0,32 e 0,86 Mg ha-1, para soja e milho, respectivamente. Dessa forma, a metodologia abordada no estudo se mostrou eficiente para a estimativa da evapotranspiração e balanço hídrico, bem como, avaliar a resposta das culturas à disponibilidade hídrica nas principais regiões produtoras de grãos do Rio Grande do Sul, com diversidade de solo e condições meteorológicas.Universidade Federal de Santa MariaBrasilEngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCentro de Ciências RuraisPetry, Mirta Teresinhahttp://lattes.cnpq.br/0358609083747198Rodrigues, Geraldo Joséhttp://lattes.cnpq.br/3877089171418383Chechi, Leonardo2020-03-02T21:39:17Z2020-03-02T21:39:17Z2019-12-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19701ark:/26339/001300000nt8mporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2020-03-03T06:01:29Zoai:repositorio.ufsm.br:1/19701Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2020-03-03T06:01:29Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
Monitoring water requirement and grain yield for soybean and maize through combination of soil water balance model and remote sensing
title Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
spellingShingle Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
Chechi, Leonardo
SIMDualKc
Stewart
Evapotranspiration
Water deficit
Evapotranspiração
Déficit hídrico
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
title_full Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
title_fullStr Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
title_full_unstemmed Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
title_sort Monitoramento do requerimento hídrico e rendimento de soja e milho via combinação de modelo de balanço hídrico do solo e sensoriamento remoto
author Chechi, Leonardo
author_facet Chechi, Leonardo
author_role author
dc.contributor.none.fl_str_mv Petry, Mirta Teresinha
http://lattes.cnpq.br/0358609083747198
Rodrigues, Geraldo José
http://lattes.cnpq.br/3877089171418383
dc.contributor.author.fl_str_mv Chechi, Leonardo
dc.subject.por.fl_str_mv SIMDualKc
Stewart
Evapotranspiration
Water deficit
Evapotranspiração
Déficit hídrico
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
topic SIMDualKc
Stewart
Evapotranspiration
Water deficit
Evapotranspiração
Déficit hídrico
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description The increase in world population has resulted in increased demand for food, requiring increased crop productivity. Water stress is the major limiting factor for grain yield of spring-summer crops in Rio Grande do Sul, frequently requiring supplemental irrigation, especially in the most critical stages of water stress. In order to increase productivity and inputs use efficiency, current methodologies need to be improved and new alternatives sought to allow more accurate assessments of crop water requirement as well as crop response to water availability. In this way, the main objective of this work was to improve the estimation of the crop evapotranspiration (ETc) for soybean and corn under subtropical humid conditions by combining SIMDualKc soil water balance model and vegetation indices derived from remote sensing. In addition, the study sought to access soil evaporation (Es) and actual crop transpiration (Tc act), and relate Tc act to grain yield by applying empirical functions for corn and soybean crops in Rio Grande do Sul. The study methodology was composed of four steps: (i) calibration and validation of the SIMDualKc model; (ii) calibration and validation of the fraction of soil covered (fc) and leaf area index (LAI) estimated with NDVI; (iii) validation of SIMDualKc with fc and LAI derived from NDVI; and (iv) application S1 and S2 phases of the SIMDualKc-Stewart model to estimate grain yield. Steps i and ii consisted of field experiments carried out in irrigated and rainfed areas, in 2018/19 crop season, in the Depressão Central region of RS, with corn (first crop) and soybean (second crop). The areas used in step iii are farm areas and located in the major producing regions of Rio Grande do Sul state, including the Depressão Central, the Planalto Médio and Missões during the 2017/18 and 2018/19 crop seasons. In each farm a central pivot irrigated area and a rainfed area were used, when available. For stage iv, all study areas were used for calibration and validation of the SIMDualKc-Stewart model. The use of the SIMDualKc model combined with the NDVI vegetation index was efficient in simulating soil water balance by partitioning ETc act into Es and Tc act. The efficiency of the simulation was proved by the application of statistical indicators, with RMSE ranging from 2.96 to 6.52% of TAW among all soybean and corn crops areas. For the SIMDualKc-Stewart model the S2 phase was more accurate for grain yield estimation, where the RMSE was of 0.32 and 0.86 Mg ha-1, for soybean and corn, respectively. Thus, the methodology presented in the study proved to be efficient for the estimation of ETc act and soil water balance, as well as the crop response to water availability for soybean and maize grown in the main producing regions of Rio Grande do Sul state, in diversified conditions of soil and climate.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-13
2020-03-02T21:39:17Z
2020-03-02T21:39:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/19701
dc.identifier.dark.fl_str_mv ark:/26339/001300000nt8m
url http://repositorio.ufsm.br/handle/1/19701
identifier_str_mv ark:/26339/001300000nt8m
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172369432444928