Dynamic and static task mapping in a network-on-chip using machine learning techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Idioma: | eng |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000r1p7 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/25250 |
Resumo: | Trabalho de conclusão de curso (graduação) - Universidade Federal de Santa Maria, Centro de Tecnologia, Curso de Engenharia de Computação, RS, 2015. |
id |
UFSM_490a7829a198c3626f86e9fe4faf0e7f |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/25250 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Dynamic and static task mapping in a network-on-chip using machine learning techniquesNetwork on chipDynamicMappingMachine learningAlgorithmsSVMCNPQ::ENGENHARIASTrabalho de conclusão de curso (graduação) - Universidade Federal de Santa Maria, Centro de Tecnologia, Curso de Engenharia de Computação, RS, 2015.In the past few years, the number of cores encapsulated in a single die has been increasing dramatically. As the performance of bus infrastructure does not scale with the increasing number of cores, NoC (Network-on-Chip) has been largely used to connect them in multiprocessing systems. However, even using NoC, the overall system performance can be affected due to a poor task mapping. Considering such scenario, this work proposes a static and a dynamic task mapping flow to mitigate the communication overhead between tasks in a NoC. A workflow using machine learning algorithms is considered since: it can find an almost optimal configuration as a solution; and it can deal with the overhead generated by other algorithms, which makes they timely unfeasible to be used dynamically. At compile time, a genetic algorithm, which can find a static solution, combined with cluster techniques is used for generating a dataset which can be used for training of unsupervised algorithms. At execution time, a Support Vector Machine, due to its low overhead and robustness, use the training set generated at compile time for mapping tasks on the fly according to its communication behavior. Results show that with good classifications and training of supervised algorithms the proposed work flow can reduce the overhead and generate good mapping results, which makes a dynamic mapping possible.Universidade Federal de Santa MariaBrasilUFSMCentro de TecnologiaBeck Rutzig, MateusBrondani, Juliana Rubenich2022-07-06T19:53:53Z2022-07-06T19:53:53Z2015-12-162015Trabalho de Conclusão de Curso de Graduaçãoinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://repositorio.ufsm.br/handle/1/25250ark:/26339/001300000r1p7engAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-09-23T12:48:11Zoai:repositorio.ufsm.br:1/25250Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-09-23T12:48:11Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
title |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
spellingShingle |
Dynamic and static task mapping in a network-on-chip using machine learning techniques Brondani, Juliana Rubenich Network on chip Dynamic Mapping Machine learning Algorithms SVM CNPQ::ENGENHARIAS |
title_short |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
title_full |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
title_fullStr |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
title_full_unstemmed |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
title_sort |
Dynamic and static task mapping in a network-on-chip using machine learning techniques |
author |
Brondani, Juliana Rubenich |
author_facet |
Brondani, Juliana Rubenich |
author_role |
author |
dc.contributor.none.fl_str_mv |
Beck Rutzig, Mateus |
dc.contributor.author.fl_str_mv |
Brondani, Juliana Rubenich |
dc.subject.por.fl_str_mv |
Network on chip Dynamic Mapping Machine learning Algorithms SVM CNPQ::ENGENHARIAS |
topic |
Network on chip Dynamic Mapping Machine learning Algorithms SVM CNPQ::ENGENHARIAS |
description |
Trabalho de conclusão de curso (graduação) - Universidade Federal de Santa Maria, Centro de Tecnologia, Curso de Engenharia de Computação, RS, 2015. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-16 2015 2022-07-06T19:53:53Z 2022-07-06T19:53:53Z |
dc.type.driver.fl_str_mv |
Trabalho de Conclusão de Curso de Graduação |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/25250 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000r1p7 |
url |
http://repositorio.ufsm.br/handle/1/25250 |
identifier_str_mv |
ark:/26339/001300000r1p7 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil UFSM Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil UFSM Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172382251286528 |