Produção de biodiesel em escala piloto via hidroesterificação enzimática

Detalhes bibliográficos
Autor(a) principal: Wancura, João Henrique Cabral
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000010qdc
Texto Completo: http://repositorio.ufsm.br/handle/1/23167
Resumo: The report “State of the Climate” released by the World Meteorological Organization at 25th Climate Changes Conference highlights that 2019 ends an alarming decade regarding the historical increase in the average temperature of the planet and record rise in sea level. Such environmental problems were enhanced by the emission of greenhouse gases expelled mainly from the burning of fossil fuels in internal combustion engines. In this context, biodiesel (methyl or ethyl esters of long chain fatty acids) has consolidated itself in the global energy matrix as an alternative to its similar derivative from petroleum, becoming an indispensable component to be mixed with diesel for commercialization purposes. Among the distinct ways of synthesizing biodiesel, the application of lipases in liquid formulation as reaction catalyst has the potential to make the process more economical, competitive and sustainable compared to the use of immobilized enzymes. However, despite the benefits, the long reaction times required to achieve satisfactory yields as well as the denaturing effect of methanol (the main reaction reagent) on the enzyme are still drawbacks of the process. Before the exposed, this thesis aimed to evaluate the process of obtaining biodiesel via enzymatic hydroesterification mediated by two soluble enzymes: Eversa® Transform and the recently launched thermostable lipase Eversa® Transform 2.0 (also named as NS 40116), both obtained from the Thermomyces lanuginosus microorganism and supplied by Novozymes A/K. For this, different feedstocks were employed: degummed soybean oil (the main raw material used industrially for biodiesel production), beef tallow and waste cooking oil with high acidity. Preliminary tests using the lipase Eversa® Transform demonstrated that different feeding strategies of inputs (enzyme and alcohol) to the reaction significantly impact on the reaction yield. At 35 °C, a methanol to substrate (tallow) molar ratio of 4.5:1, with alcohol feeding at constant flow of 3.0 g∙h-1, 1.0 wt% of lipase, 6.0 wt % of water and 8 h of reaction, 85.08% of FAME yield was obtained, an interesting value but below that required by regulatory standards. Thus, improvements in the process were necessary. For this, a proposal of reaction configuration in two stages showed to be effective in elevating the process productivity: using 0.70 wt% of lipase NS 40116, 35 °C, a total methanol to substrate molar ratio of 6.3:1 and 8 wt% of water, 97.1% FAME yield was achieved in 8 h of reaction. Such yield is similar to that obtained by similar researches that required up to 24 h of reaction in a single reaction stage, demonstrating that the proposed configuration is an attractive option for the process. Then, with the reaction parameters for the process in two stages optimized via experimental design, was started to assess the biotechnological route on a superior scale than the lab. Using a pilot unit with 60 L of production capacity, waste oil used as raw material and with the reaction conditions found previously in the laboratory, 96.2 % of FAME yield was achieved. Still with these results, a pseudo-first order model was proposed to adjust the experimental data, where an apparent reaction rate (kApp) of 0.373·h-1 was obtained. Moreover, an economic analysis indicated the feasibility of the system through a positive net return and an operating cost of US$ 0.50∙kg-1 of biofuel. This information served to conclude that enzymatic hydroesterification catalyzed by liquid lipases has the necessary tools to be implemented in the industrial production of biodiesel.
id UFSM_50bed8cf568e4d2d941ba77debe2586b
oai_identifier_str oai:repositorio.ufsm.br:1/23167
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Produção de biodiesel em escala piloto via hidroesterificação enzimáticaBiodiesel production in pilot scale via enzymatic hydrosterificationBiodieselFAMELipase solúvelNS 40116Eversa® TransformHidroesterificaçãoSoluble lipaseHidroesterificationCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAThe report “State of the Climate” released by the World Meteorological Organization at 25th Climate Changes Conference highlights that 2019 ends an alarming decade regarding the historical increase in the average temperature of the planet and record rise in sea level. Such environmental problems were enhanced by the emission of greenhouse gases expelled mainly from the burning of fossil fuels in internal combustion engines. In this context, biodiesel (methyl or ethyl esters of long chain fatty acids) has consolidated itself in the global energy matrix as an alternative to its similar derivative from petroleum, becoming an indispensable component to be mixed with diesel for commercialization purposes. Among the distinct ways of synthesizing biodiesel, the application of lipases in liquid formulation as reaction catalyst has the potential to make the process more economical, competitive and sustainable compared to the use of immobilized enzymes. However, despite the benefits, the long reaction times required to achieve satisfactory yields as well as the denaturing effect of methanol (the main reaction reagent) on the enzyme are still drawbacks of the process. Before the exposed, this thesis aimed to evaluate the process of obtaining biodiesel via enzymatic hydroesterification mediated by two soluble enzymes: Eversa® Transform and the recently launched thermostable lipase Eversa® Transform 2.0 (also named as NS 40116), both obtained from the Thermomyces lanuginosus microorganism and supplied by Novozymes A/K. For this, different feedstocks were employed: degummed soybean oil (the main raw material used industrially for biodiesel production), beef tallow and waste cooking oil with high acidity. Preliminary tests using the lipase Eversa® Transform demonstrated that different feeding strategies of inputs (enzyme and alcohol) to the reaction significantly impact on the reaction yield. At 35 °C, a methanol to substrate (tallow) molar ratio of 4.5:1, with alcohol feeding at constant flow of 3.0 g∙h-1, 1.0 wt% of lipase, 6.0 wt % of water and 8 h of reaction, 85.08% of FAME yield was obtained, an interesting value but below that required by regulatory standards. Thus, improvements in the process were necessary. For this, a proposal of reaction configuration in two stages showed to be effective in elevating the process productivity: using 0.70 wt% of lipase NS 40116, 35 °C, a total methanol to substrate molar ratio of 6.3:1 and 8 wt% of water, 97.1% FAME yield was achieved in 8 h of reaction. Such yield is similar to that obtained by similar researches that required up to 24 h of reaction in a single reaction stage, demonstrating that the proposed configuration is an attractive option for the process. Then, with the reaction parameters for the process in two stages optimized via experimental design, was started to assess the biotechnological route on a superior scale than the lab. Using a pilot unit with 60 L of production capacity, waste oil used as raw material and with the reaction conditions found previously in the laboratory, 96.2 % of FAME yield was achieved. Still with these results, a pseudo-first order model was proposed to adjust the experimental data, where an apparent reaction rate (kApp) of 0.373·h-1 was obtained. Moreover, an economic analysis indicated the feasibility of the system through a positive net return and an operating cost of US$ 0.50∙kg-1 of biofuel. This information served to conclude that enzymatic hydroesterification catalyzed by liquid lipases has the necessary tools to be implemented in the industrial production of biodiesel.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO relatório “State of the Climate” divulgado pela Organização Meteorológica Mundial na 25ª Conferência Sobre Mudanças Climáticas destaca que 2019 encerra uma alarmante década em relação ao aumento histórico da temperatura média do planeta e recorde na elevação do nível do mar. Tais problemas ambientais foram potencializados pela emissão de gases de efeito estufa expelidos principalmente da queima de combustíveis de origem fóssil em motores à combustão interna. Neste contexto, o biodiesel (ésteres metílicos ou etílicos de ácidos graxos de cadeia longa) se consolidou na matriz energética mundial como uma alternativa ao seu similar derivado do petróleo, tornando-se um componente indispensável à ser misturado com o diesel para fins de comercialização. Dentre as distintas formas de sintetizar biodiesel, a aplicação de lipases em formulação líquida como catalisador da reação possui potencial para tornar o processo mais econômico, competitivo e sustentável em comparação ao uso da enzima imobilizada. No entanto, apesar dos benefícios, os longos tempos de reação necessários para atingir satisfatórios rendimentos bem como o efeito desnaturante do metanol (principal reagente da reação) sobre a enzima ainda são desvantagens do processo. Diante do exposto, esta tese teve por objetivo avaliar o processo de obtenção de biodiesel via hidroesterificação enzimática mediada por duas enzimas solúveis: Eversa® Transform e a recentemente lançada lipase termoestável Eversa® Transform 2.0 (também conhecida como NS 40116), ambas obtidas do microrganismo Thermomyces lanuginosus e fornecidas pela Novozymes A/K. Para isto, diferentes matérias-primas foram empregadas: óleo de soja degomado (principal matéria-prima utilizada industrialmente para produção de biodiesel), sebo de carne e óleo de cozinha usado de elevada acidez. Ensaios preliminares utilizando a lipase Eversa® Transform demonstraram que diferentes estratégias de alimentação dos insumos (enzima e álcool) à reação impactam consideravelmente no rendimento. A 35 °C, razão molar entre metanol e substrato (sebo) de 4,5:1, com alimentação do álcool à fluxo constante de 3,0 g∙h-1, 1,0 m% de lipase, 6,0 m% de água e 8 h de reação, 85,08 % de rendimento de FAME foi obtido, um valor interessante mas aquém do exigido por normas regulamentadoras. Assim, melhorias no processo se fizeram necessárias. Para isto, uma proposta de configuração em dois estágios reacionais mostrou-se efetiva em alavancar a produtividade do processo: utilizando-se 0,70 m% da lipase NS 40116, 35 °C, relação molar total entre metanol e substrato de 6,3:1 e 8,0 m% de água, 97,1 % de rendimento de FAME foi alcançado em 8 h de reação. Tal rendimento é similar ao obtido por pesquisas similares que necessitaram de até 24 h de reação em um estágio reacional único, demonstrando que a configuração proposta é uma opção atraente para o processo. Assim, com os parâmetros reacionais para o processo em dois estágios otimizados via planejamento experimental, partiu-se para avaliação da rota biotecnológica em escala superior à laboratorial. Utilizando-se de uma unidade piloto com 60 L de capacidade de produção, óleo de cozinha usado como matéria-prima e com as condições reacionais encontradas previamente em laboratório, 96,2 % de rendimento de FAME foi alcançado. Ainda com estes resultados, foi proposto um modelo de pseudo-primeira ordem para ajuste dos dados experimentais, onde uma taxa reacional aparente (kApp) de 0,373·h-1 foi obtida. Além disso, uma análise econômica indicou a viabilidade do sistema por meio de um retorno líquido positivo e custo operacional de US$ 0,50∙kg-1 de biocombustível. Estas informações serviram para concluir que a hidroesterificação enzimática catalisada por lipases líquidas possui as ferramentas necessárias para ser implementada na produção industrial de biodiesel.Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaJahn, Sérgio Luizhttp://lattes.cnpq.br/7735147410610776Tres, Marcus ViniciusMazutti, Marcio AntonioZabot, Giovani LeoneKetzer, FelipeOliveira, José Vladimir deWancura, João Henrique Cabral2021-12-06T16:36:30Z2021-12-06T16:36:30Z2021-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23167ark:/26339/0013000010qdcporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-28T13:23:49Zoai:repositorio.ufsm.br:1/23167Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-28T13:23:49Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Produção de biodiesel em escala piloto via hidroesterificação enzimática
Biodiesel production in pilot scale via enzymatic hydrosterification
title Produção de biodiesel em escala piloto via hidroesterificação enzimática
spellingShingle Produção de biodiesel em escala piloto via hidroesterificação enzimática
Wancura, João Henrique Cabral
Biodiesel
FAME
Lipase solúvel
NS 40116
Eversa® Transform
Hidroesterificação
Soluble lipase
Hidroesterification
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Produção de biodiesel em escala piloto via hidroesterificação enzimática
title_full Produção de biodiesel em escala piloto via hidroesterificação enzimática
title_fullStr Produção de biodiesel em escala piloto via hidroesterificação enzimática
title_full_unstemmed Produção de biodiesel em escala piloto via hidroesterificação enzimática
title_sort Produção de biodiesel em escala piloto via hidroesterificação enzimática
author Wancura, João Henrique Cabral
author_facet Wancura, João Henrique Cabral
author_role author
dc.contributor.none.fl_str_mv Jahn, Sérgio Luiz
http://lattes.cnpq.br/7735147410610776
Tres, Marcus Vinicius
Mazutti, Marcio Antonio
Zabot, Giovani Leone
Ketzer, Felipe
Oliveira, José Vladimir de
dc.contributor.author.fl_str_mv Wancura, João Henrique Cabral
dc.subject.por.fl_str_mv Biodiesel
FAME
Lipase solúvel
NS 40116
Eversa® Transform
Hidroesterificação
Soluble lipase
Hidroesterification
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Biodiesel
FAME
Lipase solúvel
NS 40116
Eversa® Transform
Hidroesterificação
Soluble lipase
Hidroesterification
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description The report “State of the Climate” released by the World Meteorological Organization at 25th Climate Changes Conference highlights that 2019 ends an alarming decade regarding the historical increase in the average temperature of the planet and record rise in sea level. Such environmental problems were enhanced by the emission of greenhouse gases expelled mainly from the burning of fossil fuels in internal combustion engines. In this context, biodiesel (methyl or ethyl esters of long chain fatty acids) has consolidated itself in the global energy matrix as an alternative to its similar derivative from petroleum, becoming an indispensable component to be mixed with diesel for commercialization purposes. Among the distinct ways of synthesizing biodiesel, the application of lipases in liquid formulation as reaction catalyst has the potential to make the process more economical, competitive and sustainable compared to the use of immobilized enzymes. However, despite the benefits, the long reaction times required to achieve satisfactory yields as well as the denaturing effect of methanol (the main reaction reagent) on the enzyme are still drawbacks of the process. Before the exposed, this thesis aimed to evaluate the process of obtaining biodiesel via enzymatic hydroesterification mediated by two soluble enzymes: Eversa® Transform and the recently launched thermostable lipase Eversa® Transform 2.0 (also named as NS 40116), both obtained from the Thermomyces lanuginosus microorganism and supplied by Novozymes A/K. For this, different feedstocks were employed: degummed soybean oil (the main raw material used industrially for biodiesel production), beef tallow and waste cooking oil with high acidity. Preliminary tests using the lipase Eversa® Transform demonstrated that different feeding strategies of inputs (enzyme and alcohol) to the reaction significantly impact on the reaction yield. At 35 °C, a methanol to substrate (tallow) molar ratio of 4.5:1, with alcohol feeding at constant flow of 3.0 g∙h-1, 1.0 wt% of lipase, 6.0 wt % of water and 8 h of reaction, 85.08% of FAME yield was obtained, an interesting value but below that required by regulatory standards. Thus, improvements in the process were necessary. For this, a proposal of reaction configuration in two stages showed to be effective in elevating the process productivity: using 0.70 wt% of lipase NS 40116, 35 °C, a total methanol to substrate molar ratio of 6.3:1 and 8 wt% of water, 97.1% FAME yield was achieved in 8 h of reaction. Such yield is similar to that obtained by similar researches that required up to 24 h of reaction in a single reaction stage, demonstrating that the proposed configuration is an attractive option for the process. Then, with the reaction parameters for the process in two stages optimized via experimental design, was started to assess the biotechnological route on a superior scale than the lab. Using a pilot unit with 60 L of production capacity, waste oil used as raw material and with the reaction conditions found previously in the laboratory, 96.2 % of FAME yield was achieved. Still with these results, a pseudo-first order model was proposed to adjust the experimental data, where an apparent reaction rate (kApp) of 0.373·h-1 was obtained. Moreover, an economic analysis indicated the feasibility of the system through a positive net return and an operating cost of US$ 0.50∙kg-1 of biofuel. This information served to conclude that enzymatic hydroesterification catalyzed by liquid lipases has the necessary tools to be implemented in the industrial production of biodiesel.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-06T16:36:30Z
2021-12-06T16:36:30Z
2021-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23167
dc.identifier.dark.fl_str_mv ark:/26339/0013000010qdc
url http://repositorio.ufsm.br/handle/1/23167
identifier_str_mv ark:/26339/0013000010qdc
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172425922379776