Escalonamento adaptativo para o Apache Hadoop
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000xwwc |
Texto Completo: | http://repositorio.ufsm.br/handle/1/12025 |
Resumo: | Many alternatives have been employed in order to process all the data generated by current applications in a timely manner. One of these alternatives, the Apache Hadoop, combines parallel and distributed processing with the MapReduce paradigm in order to provide an environment that is able to process a huge data volume using a simple programming model. However, Apache Hadoop has been designed for dedicated and homogeneous clusters, a limitation that creates challenges for those who wish to use the framework in other circumstances. Often, acquiring a dedicated cluster can be impracticable due to the cost, and the acquisition of reposition parts can be a threat to the homogeneity of a cluster. In these cases, an option commonly used by the companies is the usage of idle computing resources in their network, however the original distribution of Hadoop would show serious performance issues in these conditions. Thus, this study was aimed to improve Hadoop’s capacity of adapting to pervasive and shared environments, where the availability of resources will undergo variations during the execution. Therefore, context-awareness techniques were used in order to collect information about the available capacity in each worker node and distributed communication techniques were used to update this information on scheduler. The joint usage of both techniques aimed at minimizing and/or eliminating the overload that would happen on shared nodes, resulting in an improvement of up to 50% on performance in a shared cluster, when compared to the original distribution, and indicated that a simple solution can positively impact the scheduling, increasing the variety of environments where the use of Hadoop is possible. |
id |
UFSM_51898fd7de5c37a6731c3f9ce200be56 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/12025 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Escalonamento adaptativo para o Apache HadoopAdaptative scheduling for Apache HadoopApache HadoopEscalonamentoSensibilidade ao contextoSchedulingContext-awareCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMany alternatives have been employed in order to process all the data generated by current applications in a timely manner. One of these alternatives, the Apache Hadoop, combines parallel and distributed processing with the MapReduce paradigm in order to provide an environment that is able to process a huge data volume using a simple programming model. However, Apache Hadoop has been designed for dedicated and homogeneous clusters, a limitation that creates challenges for those who wish to use the framework in other circumstances. Often, acquiring a dedicated cluster can be impracticable due to the cost, and the acquisition of reposition parts can be a threat to the homogeneity of a cluster. In these cases, an option commonly used by the companies is the usage of idle computing resources in their network, however the original distribution of Hadoop would show serious performance issues in these conditions. Thus, this study was aimed to improve Hadoop’s capacity of adapting to pervasive and shared environments, where the availability of resources will undergo variations during the execution. Therefore, context-awareness techniques were used in order to collect information about the available capacity in each worker node and distributed communication techniques were used to update this information on scheduler. The joint usage of both techniques aimed at minimizing and/or eliminating the overload that would happen on shared nodes, resulting in an improvement of up to 50% on performance in a shared cluster, when compared to the original distribution, and indicated that a simple solution can positively impact the scheduling, increasing the variety of environments where the use of Hadoop is possible.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESDiversas alternativas têm sido empregadas para o processamento, em tempo hábil, da grande quantidade de dados que é gerada pelas aplicações atuais. Uma destas alternativas, o Apache Hadoop, combina processamento paralelo e distribuído com o paradigma MapReduce para fornecer um ambiente capaz de processar um grande volume de informações através de um modelo de programação simplificada. No entanto, o Apache Hadoop foi projetado para utilização em clusters dedicados e homogêneos, uma limitação que gera desafios para aqueles que desejam utilizá-lo sob outras circunstâncias. Muitas vezes um cluster dedicado pode ser inviável pelo custo de aquisição e a homogeneidade pode ser ameaçada devido à dificuldade de adquirir peças de reposição. Em muitos desses casos, uma opção encontrada pelas empresas é a utilização dos recursos computacionais ociosos em sua rede, porém a distribuição original do Hadoop apresentaria sérios problemas de desempenho nestas condições. Sendo assim, este estudo propôs melhorar a capacidade do Hadoop em adaptar-se a ambientes, pervasivos e compartilhados, onde a disponibilidade de recursos sofrerá variações no decorrer da execução. Para tanto, utilizaram-se técnicas de sensibilidade ao contexto para coletar informações sobre a capacidade disponível nos nós trabalhadores e técnicas de comunicação distribuída para atualizar estas informações no escalonador. A utilização conjunta dessas técnicas teve como objetivo a minimização e/ou eliminação da sobrecarga que seria causada em nós com compartilhamento, resultando em uma melhora de até 50% no desempenho em um cluster compartilhado, quando comparado com a distribuição original, e indicou que uma solução simples pode impactar positivamente o escalonamento, aumentando a variedade de ambientes onde a utilização do Hadoop é possível.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em InformáticaCentro de TecnologiaCharao, Andrea Schwertnerhttp://lattes.cnpq.br/8251676116103188Stein, Benhur de Oliveirahttp://lattes.cnpq.br/4640320476003795Senger, Hermeshttp://lattes.cnpq.br/3691742159298316Cassales, Guilherme Weigert2017-11-13T11:43:37Z2017-11-13T11:43:37Z2016-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/12025ark:/26339/001300000xwwcporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-04-01T11:17:54Zoai:repositorio.ufsm.br:1/12025Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-04-01T11:17:54Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Escalonamento adaptativo para o Apache Hadoop Adaptative scheduling for Apache Hadoop |
title |
Escalonamento adaptativo para o Apache Hadoop |
spellingShingle |
Escalonamento adaptativo para o Apache Hadoop Cassales, Guilherme Weigert Apache Hadoop Escalonamento Sensibilidade ao contexto Scheduling Context-aware CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Escalonamento adaptativo para o Apache Hadoop |
title_full |
Escalonamento adaptativo para o Apache Hadoop |
title_fullStr |
Escalonamento adaptativo para o Apache Hadoop |
title_full_unstemmed |
Escalonamento adaptativo para o Apache Hadoop |
title_sort |
Escalonamento adaptativo para o Apache Hadoop |
author |
Cassales, Guilherme Weigert |
author_facet |
Cassales, Guilherme Weigert |
author_role |
author |
dc.contributor.none.fl_str_mv |
Charao, Andrea Schwertner http://lattes.cnpq.br/8251676116103188 Stein, Benhur de Oliveira http://lattes.cnpq.br/4640320476003795 Senger, Hermes http://lattes.cnpq.br/3691742159298316 |
dc.contributor.author.fl_str_mv |
Cassales, Guilherme Weigert |
dc.subject.por.fl_str_mv |
Apache Hadoop Escalonamento Sensibilidade ao contexto Scheduling Context-aware CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
Apache Hadoop Escalonamento Sensibilidade ao contexto Scheduling Context-aware CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Many alternatives have been employed in order to process all the data generated by current applications in a timely manner. One of these alternatives, the Apache Hadoop, combines parallel and distributed processing with the MapReduce paradigm in order to provide an environment that is able to process a huge data volume using a simple programming model. However, Apache Hadoop has been designed for dedicated and homogeneous clusters, a limitation that creates challenges for those who wish to use the framework in other circumstances. Often, acquiring a dedicated cluster can be impracticable due to the cost, and the acquisition of reposition parts can be a threat to the homogeneity of a cluster. In these cases, an option commonly used by the companies is the usage of idle computing resources in their network, however the original distribution of Hadoop would show serious performance issues in these conditions. Thus, this study was aimed to improve Hadoop’s capacity of adapting to pervasive and shared environments, where the availability of resources will undergo variations during the execution. Therefore, context-awareness techniques were used in order to collect information about the available capacity in each worker node and distributed communication techniques were used to update this information on scheduler. The joint usage of both techniques aimed at minimizing and/or eliminating the overload that would happen on shared nodes, resulting in an improvement of up to 50% on performance in a shared cluster, when compared to the original distribution, and indicated that a simple solution can positively impact the scheduling, increasing the variety of environments where the use of Hadoop is possible. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-11 2017-11-13T11:43:37Z 2017-11-13T11:43:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/12025 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000xwwc |
url |
http://repositorio.ufsm.br/handle/1/12025 |
identifier_str_mv |
ark:/26339/001300000xwwc |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Informática Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Informática Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172415339102208 |