Escalonamento adaptativo para o Apache Hadoop

Detalhes bibliográficos
Autor(a) principal: Cassales, Guilherme Weigert
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000xwwc
Texto Completo: http://repositorio.ufsm.br/handle/1/12025
Resumo: Many alternatives have been employed in order to process all the data generated by current applications in a timely manner. One of these alternatives, the Apache Hadoop, combines parallel and distributed processing with the MapReduce paradigm in order to provide an environment that is able to process a huge data volume using a simple programming model. However, Apache Hadoop has been designed for dedicated and homogeneous clusters, a limitation that creates challenges for those who wish to use the framework in other circumstances. Often, acquiring a dedicated cluster can be impracticable due to the cost, and the acquisition of reposition parts can be a threat to the homogeneity of a cluster. In these cases, an option commonly used by the companies is the usage of idle computing resources in their network, however the original distribution of Hadoop would show serious performance issues in these conditions. Thus, this study was aimed to improve Hadoop’s capacity of adapting to pervasive and shared environments, where the availability of resources will undergo variations during the execution. Therefore, context-awareness techniques were used in order to collect information about the available capacity in each worker node and distributed communication techniques were used to update this information on scheduler. The joint usage of both techniques aimed at minimizing and/or eliminating the overload that would happen on shared nodes, resulting in an improvement of up to 50% on performance in a shared cluster, when compared to the original distribution, and indicated that a simple solution can positively impact the scheduling, increasing the variety of environments where the use of Hadoop is possible.
id UFSM_51898fd7de5c37a6731c3f9ce200be56
oai_identifier_str oai:repositorio.ufsm.br:1/12025
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Escalonamento adaptativo para o Apache HadoopAdaptative scheduling for Apache HadoopApache HadoopEscalonamentoSensibilidade ao contextoSchedulingContext-awareCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMany alternatives have been employed in order to process all the data generated by current applications in a timely manner. One of these alternatives, the Apache Hadoop, combines parallel and distributed processing with the MapReduce paradigm in order to provide an environment that is able to process a huge data volume using a simple programming model. However, Apache Hadoop has been designed for dedicated and homogeneous clusters, a limitation that creates challenges for those who wish to use the framework in other circumstances. Often, acquiring a dedicated cluster can be impracticable due to the cost, and the acquisition of reposition parts can be a threat to the homogeneity of a cluster. In these cases, an option commonly used by the companies is the usage of idle computing resources in their network, however the original distribution of Hadoop would show serious performance issues in these conditions. Thus, this study was aimed to improve Hadoop’s capacity of adapting to pervasive and shared environments, where the availability of resources will undergo variations during the execution. Therefore, context-awareness techniques were used in order to collect information about the available capacity in each worker node and distributed communication techniques were used to update this information on scheduler. The joint usage of both techniques aimed at minimizing and/or eliminating the overload that would happen on shared nodes, resulting in an improvement of up to 50% on performance in a shared cluster, when compared to the original distribution, and indicated that a simple solution can positively impact the scheduling, increasing the variety of environments where the use of Hadoop is possible.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESDiversas alternativas têm sido empregadas para o processamento, em tempo hábil, da grande quantidade de dados que é gerada pelas aplicações atuais. Uma destas alternativas, o Apache Hadoop, combina processamento paralelo e distribuído com o paradigma MapReduce para fornecer um ambiente capaz de processar um grande volume de informações através de um modelo de programação simplificada. No entanto, o Apache Hadoop foi projetado para utilização em clusters dedicados e homogêneos, uma limitação que gera desafios para aqueles que desejam utilizá-lo sob outras circunstâncias. Muitas vezes um cluster dedicado pode ser inviável pelo custo de aquisição e a homogeneidade pode ser ameaçada devido à dificuldade de adquirir peças de reposição. Em muitos desses casos, uma opção encontrada pelas empresas é a utilização dos recursos computacionais ociosos em sua rede, porém a distribuição original do Hadoop apresentaria sérios problemas de desempenho nestas condições. Sendo assim, este estudo propôs melhorar a capacidade do Hadoop em adaptar-se a ambientes, pervasivos e compartilhados, onde a disponibilidade de recursos sofrerá variações no decorrer da execução. Para tanto, utilizaram-se técnicas de sensibilidade ao contexto para coletar informações sobre a capacidade disponível nos nós trabalhadores e técnicas de comunicação distribuída para atualizar estas informações no escalonador. A utilização conjunta dessas técnicas teve como objetivo a minimização e/ou eliminação da sobrecarga que seria causada em nós com compartilhamento, resultando em uma melhora de até 50% no desempenho em um cluster compartilhado, quando comparado com a distribuição original, e indicou que uma solução simples pode impactar positivamente o escalonamento, aumentando a variedade de ambientes onde a utilização do Hadoop é possível.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em InformáticaCentro de TecnologiaCharao, Andrea Schwertnerhttp://lattes.cnpq.br/8251676116103188Stein, Benhur de Oliveirahttp://lattes.cnpq.br/4640320476003795Senger, Hermeshttp://lattes.cnpq.br/3691742159298316Cassales, Guilherme Weigert2017-11-13T11:43:37Z2017-11-13T11:43:37Z2016-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/12025ark:/26339/001300000xwwcporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-04-01T11:17:54Zoai:repositorio.ufsm.br:1/12025Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-04-01T11:17:54Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Escalonamento adaptativo para o Apache Hadoop
Adaptative scheduling for Apache Hadoop
title Escalonamento adaptativo para o Apache Hadoop
spellingShingle Escalonamento adaptativo para o Apache Hadoop
Cassales, Guilherme Weigert
Apache Hadoop
Escalonamento
Sensibilidade ao contexto
Scheduling
Context-aware
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Escalonamento adaptativo para o Apache Hadoop
title_full Escalonamento adaptativo para o Apache Hadoop
title_fullStr Escalonamento adaptativo para o Apache Hadoop
title_full_unstemmed Escalonamento adaptativo para o Apache Hadoop
title_sort Escalonamento adaptativo para o Apache Hadoop
author Cassales, Guilherme Weigert
author_facet Cassales, Guilherme Weigert
author_role author
dc.contributor.none.fl_str_mv Charao, Andrea Schwertner
http://lattes.cnpq.br/8251676116103188
Stein, Benhur de Oliveira
http://lattes.cnpq.br/4640320476003795
Senger, Hermes
http://lattes.cnpq.br/3691742159298316
dc.contributor.author.fl_str_mv Cassales, Guilherme Weigert
dc.subject.por.fl_str_mv Apache Hadoop
Escalonamento
Sensibilidade ao contexto
Scheduling
Context-aware
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Apache Hadoop
Escalonamento
Sensibilidade ao contexto
Scheduling
Context-aware
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Many alternatives have been employed in order to process all the data generated by current applications in a timely manner. One of these alternatives, the Apache Hadoop, combines parallel and distributed processing with the MapReduce paradigm in order to provide an environment that is able to process a huge data volume using a simple programming model. However, Apache Hadoop has been designed for dedicated and homogeneous clusters, a limitation that creates challenges for those who wish to use the framework in other circumstances. Often, acquiring a dedicated cluster can be impracticable due to the cost, and the acquisition of reposition parts can be a threat to the homogeneity of a cluster. In these cases, an option commonly used by the companies is the usage of idle computing resources in their network, however the original distribution of Hadoop would show serious performance issues in these conditions. Thus, this study was aimed to improve Hadoop’s capacity of adapting to pervasive and shared environments, where the availability of resources will undergo variations during the execution. Therefore, context-awareness techniques were used in order to collect information about the available capacity in each worker node and distributed communication techniques were used to update this information on scheduler. The joint usage of both techniques aimed at minimizing and/or eliminating the overload that would happen on shared nodes, resulting in an improvement of up to 50% on performance in a shared cluster, when compared to the original distribution, and indicated that a simple solution can positively impact the scheduling, increasing the variety of environments where the use of Hadoop is possible.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-11
2017-11-13T11:43:37Z
2017-11-13T11:43:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/12025
dc.identifier.dark.fl_str_mv ark:/26339/001300000xwwc
url http://repositorio.ufsm.br/handle/1/12025
identifier_str_mv ark:/26339/001300000xwwc
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Informática
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Informática
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172415339102208