Caracterização avançada de ligantes e misturas asfálticas brasileiras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000008c1k |
Texto Completo: | http://repositorio.ufsm.br/handle/1/22487 |
Resumo: | The linear viscoelastic (LVE) and damage characterization of bituminous mixtures is imperative to analyse and design pavements. Bituminous mixtures inherit the viscoelastic behavior of bitumen. The bitumens used in paving change their properties and chemical constitution because they come from different petroleum or mixtures of petroleums and from different production routes. In order to develop the knowledge of the influence of the bitumens on the properties of the bituminous mixtures it is essential to know the stiffness of the bituminous mixture when subjected to different loads, temperatures and loading frequencies and their resistance to permanent deformation and fatigue. This research suggests that these properties of mixtures could be predicted from testing at other scales, such the chemical and rheological scales of bitumen. The general objective of this research is to define chemical and rheological markers of bitumens that affect the behavior of the mixture and to understand the multiscale correlations of laboratory results for conventional and modified Brazilian bitumens. The bitumens chosen for the development of this research were collected in most refineries in the country, seeking to represent the Brazilian production of bitumens at certain time. This study contemplates the characterization of twelve bitumens, emphasizing the conventional bitumens produced in seven refineries. Nine Bitumens 50/70, one 30/45 and two modified bitumens with rubber and SBS polymer were selected. Twelve mixtures were made with the same aggregate grading (19mm maximum nominal size and designed by the Superpave methodology) varying only the bitumen. To reach the objective, several chemical, rheological and damage tests in bitumen and mixtures were performed. An extensive experimental campaing to find the main chemical components in bitumen was carried out: Elemental analysis by X-ray fluorescence analysing Ni, V and S. Speciation of sulfur compounds by the methods of Green and Payzant. Saturates, Aromatics, Resins and Asphaltenes (SARA) fractionation, size distribution of molecules and linear chains, as well as determination of N, C and H content. Complex modulus tests were performed in bitumens using the Dynamic Shear Rheometer (DSR) and the compression complex modulus test was carried out to measure the LVE behaviour of the materials. The DSR was used to perform the Multi‐Stress Creep and Recovery Test (MSCR) to calculate the behavior of bitumen regarding permanent deformations and Flow Number (FN) and Hamburg tests were performed on the mixture scale. In the fatigue domain, Linear Amplitude Sweep (LAS) tests were performed on the bitumen scale and the direct tension cyclic fatigue test for mixtures. For the LVE results, the 2D 2S2P1D (2 Springs, 2 Parabolic Elements, 1 Dashpot) modelling was used and it was verified that all the mixtures had similar values of the constants E0 (glassy modulus) and E00 (static modulus), however, they were not identical as expected, reinforcing the influence of the bitumens. The Shift-Homothety-Shift in time-Shift (SHStS) transformation was applied to verify the correspondence of LVE behaviours of related bitumens and mixtures and presented successful predictions of mixtures LVE behaviour from bitumens LVE behaviour for nine of the twelve materials. The LVE tests results in bitumens shows that the same specification bitumens have different LVE behaviour. Some chemical markers results show good relation with the LVE behavior of bitumens: the % of high size molecules, % of Sulfur and Ni. The results of the permanent deformation of bituminous mixtures were coherent with the MSCR results, showing that it is possible to predict the damage by permanent deformation in mixtures from the bitumen scale. The high % of Sulfur and Nickel seems to improve the bitumens permanent deformation behaviour. The LAS results (failure criterion used was Gr or pseudo-energy PSE) showed that most of the 50/70 bitumens are in the same fatigue class when comparing the bitumen fatigue factors (FFBpse 19ºC). The simplified viscoelastic continuum damage (S-VECD) was used to calculate the fatigue factor of the mixtures (FFM), which had a good relationship with the FFB results for the conventional bitumens. The average size of the linear chains is a factor that correlates well with fatigue, as is the percentage of Saturates and Thiophenes. The greater the quantity of these components, the more resistant to fatigue is the bitumen. In general, it is concluded that the properties of the mixtures can be predicted from the results of the bitumen. Furthermore, the characteristics of bitumens can be partially explained by some chemical properties. |
id |
UFSM_539fd0e079584b2cb3b17d9280708452 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/22487 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Caracterização avançada de ligantes e misturas asfálticas brasileirasAdvanced characterization of brazilian bitumens and mixturesMultiescalaMisturas asfálticas brasileirasQuímicaReologiaFadigaDeformação permanente2S2P1DSHStSS-VECDMultiscaleBrazilian bituminous mixturesChemistryRheologyFatiguePermanent deformationCNPQ::ENGENHARIAS::ENGENHARIA CIVILThe linear viscoelastic (LVE) and damage characterization of bituminous mixtures is imperative to analyse and design pavements. Bituminous mixtures inherit the viscoelastic behavior of bitumen. The bitumens used in paving change their properties and chemical constitution because they come from different petroleum or mixtures of petroleums and from different production routes. In order to develop the knowledge of the influence of the bitumens on the properties of the bituminous mixtures it is essential to know the stiffness of the bituminous mixture when subjected to different loads, temperatures and loading frequencies and their resistance to permanent deformation and fatigue. This research suggests that these properties of mixtures could be predicted from testing at other scales, such the chemical and rheological scales of bitumen. The general objective of this research is to define chemical and rheological markers of bitumens that affect the behavior of the mixture and to understand the multiscale correlations of laboratory results for conventional and modified Brazilian bitumens. The bitumens chosen for the development of this research were collected in most refineries in the country, seeking to represent the Brazilian production of bitumens at certain time. This study contemplates the characterization of twelve bitumens, emphasizing the conventional bitumens produced in seven refineries. Nine Bitumens 50/70, one 30/45 and two modified bitumens with rubber and SBS polymer were selected. Twelve mixtures were made with the same aggregate grading (19mm maximum nominal size and designed by the Superpave methodology) varying only the bitumen. To reach the objective, several chemical, rheological and damage tests in bitumen and mixtures were performed. An extensive experimental campaing to find the main chemical components in bitumen was carried out: Elemental analysis by X-ray fluorescence analysing Ni, V and S. Speciation of sulfur compounds by the methods of Green and Payzant. Saturates, Aromatics, Resins and Asphaltenes (SARA) fractionation, size distribution of molecules and linear chains, as well as determination of N, C and H content. Complex modulus tests were performed in bitumens using the Dynamic Shear Rheometer (DSR) and the compression complex modulus test was carried out to measure the LVE behaviour of the materials. The DSR was used to perform the Multi‐Stress Creep and Recovery Test (MSCR) to calculate the behavior of bitumen regarding permanent deformations and Flow Number (FN) and Hamburg tests were performed on the mixture scale. In the fatigue domain, Linear Amplitude Sweep (LAS) tests were performed on the bitumen scale and the direct tension cyclic fatigue test for mixtures. For the LVE results, the 2D 2S2P1D (2 Springs, 2 Parabolic Elements, 1 Dashpot) modelling was used and it was verified that all the mixtures had similar values of the constants E0 (glassy modulus) and E00 (static modulus), however, they were not identical as expected, reinforcing the influence of the bitumens. The Shift-Homothety-Shift in time-Shift (SHStS) transformation was applied to verify the correspondence of LVE behaviours of related bitumens and mixtures and presented successful predictions of mixtures LVE behaviour from bitumens LVE behaviour for nine of the twelve materials. The LVE tests results in bitumens shows that the same specification bitumens have different LVE behaviour. Some chemical markers results show good relation with the LVE behavior of bitumens: the % of high size molecules, % of Sulfur and Ni. The results of the permanent deformation of bituminous mixtures were coherent with the MSCR results, showing that it is possible to predict the damage by permanent deformation in mixtures from the bitumen scale. The high % of Sulfur and Nickel seems to improve the bitumens permanent deformation behaviour. The LAS results (failure criterion used was Gr or pseudo-energy PSE) showed that most of the 50/70 bitumens are in the same fatigue class when comparing the bitumen fatigue factors (FFBpse 19ºC). The simplified viscoelastic continuum damage (S-VECD) was used to calculate the fatigue factor of the mixtures (FFM), which had a good relationship with the FFB results for the conventional bitumens. The average size of the linear chains is a factor that correlates well with fatigue, as is the percentage of Saturates and Thiophenes. The greater the quantity of these components, the more resistant to fatigue is the bitumen. In general, it is concluded that the properties of the mixtures can be predicted from the results of the bitumen. Furthermore, the characteristics of bitumens can be partially explained by some chemical properties.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESAs misturas asfálticas herdam o comportamento viscoelástico do ligante. Os ligantes usados na pavimentação possuem diferentes propriedades e constituição química pois são provenientes de diversos petróleos e rotas de produção. Para entender a influência dos ligantes nas propriedades das misturas asfálticas é essencial conhecer a rigidez da mistura quando submetida a diferentes cargas, temperaturas e frequências de carregamento e a sua resistência à deformação permanente e fadiga. Esta pesquisa sugere que as propriedades das misturas podem ser previstas a partir de testes em outras escalas, como as escalas químicas e reológicas do ligante. O objetivo geral desta pesquisa é obter marcadores químicos e reológicos de ligantes que afetam o comportamento da mistura e compreender as correlações multiescala de resultados de laboratório para ligantes brasileiros convencionais e modificados. Este estudo contempla a caracterização de doze ligantes, com ênfase nos ligantes convencionais produzidos em sete refinarias, visando representar a produção brasileira de ligantes em determinada época. Foram selecionados nove CAP 50/70, um CAP 30/45 e dois ligantes modificados com borracha e polímero SBS. Doze misturas foram feitas com a mesma granulometria (tamanho nominal máximo de 19mm e projetadas pela metodologia Superpave) variando apenas o ligante. Para atingir o objetivo, foram realizados diversos ensaios químicos, reológicos e de danificação em ligantes e misturas. Uma extensa campanha experimental para encontrar os principais componentes químicos no ligante foi realizada: Análise elementar de Ni, V e S por fluorescência de raios X; Especiação de compostos de enxofre pelos métodos de Green e Payzant; Fracionamento de saturados, aromáticos, resinas e asfaltenos (SARA); distribuição de tamanhos de moléculas e cadeias lineares; bem como determinação do teor de N, C e H. Ensaios de módulo complexo foram realizados para medir o comportamento LVE de ligantes usando o Reômetro de Cisalhamento Dinâmico (DSR) e o ensaio de Módulo Complexo à compressão uniaxial foi realizado nas misturas. O DSR foi usado para realizar o Multi‐Stress Creep and Recovery Test (MSCR) para calcular o comportamento do ligante em relação às deformações permanentes e o Flow Number (FN) e os testes de Hamburgo foram realizados na escala de mistura. No domínio da fadiga, foram realizados testes de Linear Amplitude Sweep (LAS) na escala de ligante e de Fadiga tração compressão direta para misturas. Para os resultados de LVE, foi utilizada a modelagem 2D 2S2P1D (2 molas, 2 elementos parabólicos, 1 amortecedor) e verificou-se que todas as misturas tinham valores semelhantes das constantes E0 (módulo vítreo) e E00 (módulo estático), porém, eles não eram idênticos como esperado, reforçando a influência dos ligantes. A transformação Shift-Homothety-Shift in time-Shift (SHStS) foi aplicada para verificar a correspondência entre os comportamentos LVE de ligantes e suas respectivas misturas, esta modelagem apresentou predições bem-sucedidas do comportamento LVE das misturas a partir do comportamento dos ligantes para nove dos doze materiais. Os resultados dos testes de LVE em ligantes mostram que os materiais de mesma especificação têm comportamento LVE diferente. Alguns resultados de marcadores químicos mostram boa relação com o comportamento LVE dos ligantes: % de moléculas grandes, % de Enxofre e Ni. Os resultados da deformação permanente de misturas betuminosas foram coerentes com os resultados do MSCR, mostrando que é possível prever o dano por deformação permanente em misturas a partir da escala do ligante. A alta % de Enxofre e Níquel parece melhorar o comportamento à deformação permanente do ligante. Os resultados do LAS (o critério de falha usado foi o da pseudoenergia) mostraram que a maioria dos CAP 50/70 estão na mesma classe de fadiga quando comparados os fatores de fadiga do ligante (FFBpse 19ºC). O dano contínuo viscoelástico simplificado (S-VECD) foi utilizado para calcular o fator de fadiga das misturas (FFM), que teve uma boa relação com os resultados de FFB para os ligantes convencionais. O tamanho médio das cadeias lineares é um fator que se correlaciona bem com a fadiga, assim como a porcentagem de saturados e tiofenos. Quanto maior a quantidade desses componentes, mais resistente à fadiga é o ligante. Em geral, conclui-se que algumas propriedades das misturas podem ser previstas a partir dos resultados dos ligantes.Universidade Federal de Santa MariaBrasilEngenharia CivilUFSMPrograma de Pós-Graduação em Engenharia CivilCentro de TecnologiaSpecht, Luciano Pivotohttp://lattes.cnpq.br/8038412953408618Benedetto, Hervé DiCaevalho, Leandro Machado deNascimento, Luis Alberto Hermann doPossebon, Évelyn Paniz2021-10-20T18:09:29Z2021-10-20T18:09:29Z2021-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22487ark:/26339/0013000008c1kporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-10-21T06:03:47Zoai:repositorio.ufsm.br:1/22487Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-10-21T06:03:47Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Caracterização avançada de ligantes e misturas asfálticas brasileiras Advanced characterization of brazilian bitumens and mixtures |
title |
Caracterização avançada de ligantes e misturas asfálticas brasileiras |
spellingShingle |
Caracterização avançada de ligantes e misturas asfálticas brasileiras Possebon, Évelyn Paniz Multiescala Misturas asfálticas brasileiras Química Reologia Fadiga Deformação permanente 2S2P1D SHStS S-VECD Multiscale Brazilian bituminous mixtures Chemistry Rheology Fatigue Permanent deformation CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
title_short |
Caracterização avançada de ligantes e misturas asfálticas brasileiras |
title_full |
Caracterização avançada de ligantes e misturas asfálticas brasileiras |
title_fullStr |
Caracterização avançada de ligantes e misturas asfálticas brasileiras |
title_full_unstemmed |
Caracterização avançada de ligantes e misturas asfálticas brasileiras |
title_sort |
Caracterização avançada de ligantes e misturas asfálticas brasileiras |
author |
Possebon, Évelyn Paniz |
author_facet |
Possebon, Évelyn Paniz |
author_role |
author |
dc.contributor.none.fl_str_mv |
Specht, Luciano Pivoto http://lattes.cnpq.br/8038412953408618 Benedetto, Hervé Di Caevalho, Leandro Machado de Nascimento, Luis Alberto Hermann do |
dc.contributor.author.fl_str_mv |
Possebon, Évelyn Paniz |
dc.subject.por.fl_str_mv |
Multiescala Misturas asfálticas brasileiras Química Reologia Fadiga Deformação permanente 2S2P1D SHStS S-VECD Multiscale Brazilian bituminous mixtures Chemistry Rheology Fatigue Permanent deformation CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
topic |
Multiescala Misturas asfálticas brasileiras Química Reologia Fadiga Deformação permanente 2S2P1D SHStS S-VECD Multiscale Brazilian bituminous mixtures Chemistry Rheology Fatigue Permanent deformation CNPQ::ENGENHARIAS::ENGENHARIA CIVIL |
description |
The linear viscoelastic (LVE) and damage characterization of bituminous mixtures is imperative to analyse and design pavements. Bituminous mixtures inherit the viscoelastic behavior of bitumen. The bitumens used in paving change their properties and chemical constitution because they come from different petroleum or mixtures of petroleums and from different production routes. In order to develop the knowledge of the influence of the bitumens on the properties of the bituminous mixtures it is essential to know the stiffness of the bituminous mixture when subjected to different loads, temperatures and loading frequencies and their resistance to permanent deformation and fatigue. This research suggests that these properties of mixtures could be predicted from testing at other scales, such the chemical and rheological scales of bitumen. The general objective of this research is to define chemical and rheological markers of bitumens that affect the behavior of the mixture and to understand the multiscale correlations of laboratory results for conventional and modified Brazilian bitumens. The bitumens chosen for the development of this research were collected in most refineries in the country, seeking to represent the Brazilian production of bitumens at certain time. This study contemplates the characterization of twelve bitumens, emphasizing the conventional bitumens produced in seven refineries. Nine Bitumens 50/70, one 30/45 and two modified bitumens with rubber and SBS polymer were selected. Twelve mixtures were made with the same aggregate grading (19mm maximum nominal size and designed by the Superpave methodology) varying only the bitumen. To reach the objective, several chemical, rheological and damage tests in bitumen and mixtures were performed. An extensive experimental campaing to find the main chemical components in bitumen was carried out: Elemental analysis by X-ray fluorescence analysing Ni, V and S. Speciation of sulfur compounds by the methods of Green and Payzant. Saturates, Aromatics, Resins and Asphaltenes (SARA) fractionation, size distribution of molecules and linear chains, as well as determination of N, C and H content. Complex modulus tests were performed in bitumens using the Dynamic Shear Rheometer (DSR) and the compression complex modulus test was carried out to measure the LVE behaviour of the materials. The DSR was used to perform the Multi‐Stress Creep and Recovery Test (MSCR) to calculate the behavior of bitumen regarding permanent deformations and Flow Number (FN) and Hamburg tests were performed on the mixture scale. In the fatigue domain, Linear Amplitude Sweep (LAS) tests were performed on the bitumen scale and the direct tension cyclic fatigue test for mixtures. For the LVE results, the 2D 2S2P1D (2 Springs, 2 Parabolic Elements, 1 Dashpot) modelling was used and it was verified that all the mixtures had similar values of the constants E0 (glassy modulus) and E00 (static modulus), however, they were not identical as expected, reinforcing the influence of the bitumens. The Shift-Homothety-Shift in time-Shift (SHStS) transformation was applied to verify the correspondence of LVE behaviours of related bitumens and mixtures and presented successful predictions of mixtures LVE behaviour from bitumens LVE behaviour for nine of the twelve materials. The LVE tests results in bitumens shows that the same specification bitumens have different LVE behaviour. Some chemical markers results show good relation with the LVE behavior of bitumens: the % of high size molecules, % of Sulfur and Ni. The results of the permanent deformation of bituminous mixtures were coherent with the MSCR results, showing that it is possible to predict the damage by permanent deformation in mixtures from the bitumen scale. The high % of Sulfur and Nickel seems to improve the bitumens permanent deformation behaviour. The LAS results (failure criterion used was Gr or pseudo-energy PSE) showed that most of the 50/70 bitumens are in the same fatigue class when comparing the bitumen fatigue factors (FFBpse 19ºC). The simplified viscoelastic continuum damage (S-VECD) was used to calculate the fatigue factor of the mixtures (FFM), which had a good relationship with the FFB results for the conventional bitumens. The average size of the linear chains is a factor that correlates well with fatigue, as is the percentage of Saturates and Thiophenes. The greater the quantity of these components, the more resistant to fatigue is the bitumen. In general, it is concluded that the properties of the mixtures can be predicted from the results of the bitumen. Furthermore, the characteristics of bitumens can be partially explained by some chemical properties. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-20T18:09:29Z 2021-10-20T18:09:29Z 2021-06-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/22487 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000008c1k |
url |
http://repositorio.ufsm.br/handle/1/22487 |
identifier_str_mv |
ark:/26339/0013000008c1k |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Civil UFSM Programa de Pós-Graduação em Engenharia Civil Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Civil UFSM Programa de Pós-Graduação em Engenharia Civil Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172303956213760 |