Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning

Detalhes bibliográficos
Autor(a) principal: Avozani, Amanda
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000vbjp
Texto Completo: http://repositorio.ufsm.br/handle/1/29498
Resumo: The development and productivity of maize crops depend crucially on water availability, making this variable extremely important for achieving high levels of productivity. In this regard, the study aimed to investigate the influence of water supply on crop development and productivity, utilizing factorial multivariate analysis (FMA) and artificial neural networks (ANNs). The study was conducted in two environments, one irrigated and one non-irrigated. Irrigation was carried out using a central pivot that applied a cumulative water depth of 36.25 mm throughout the growing cycle. Four microstations were installed in each environment, equipped with soil moisture sensors and measurements of precipitation (rainfall and irrigation). During the phenological stages, remotely piloted aircraft flights and multispectral sensors were conducted to generate vegetation indices. Data analysis showed that irrigation significantly altered the productive system, even with the application of just over 10% of the recommended irrigation. In the relationships between variables in the non-irrigated environment, the influence of a severe water deficit from mid-November/21 to mid-January/22 was observed, reflected by stress-related vegetation indices (PSRI), low productivity, and dependence on precipitation. In the irrigated environment, the addition of 36 mm through three irrigations during the critical period caused significant changes. The plants exhibited greater vegetative vigor and physiological activity, resulting in higher productivity of 7.81 t ha−¹ , a 46.35% increase compared to the non-irrigated environment (4.19 t ha−¹ ). ANNs were used to estimate maize productivity, and their estimates were influenced by variables such as soil water content measurement by sensors and the PSRI vegetation index. The ANNs presented specific models for each environment in the maize production system, with a (6-4-1) architecture consisting of 6 neurons, with a focus on the participation of soil sensor variables in the 10cm and 30cm layers and the PSRI vegetation index in the input layers. It was concluded that irrigation significantly altered the maize production system, and the FMA analysis detected the influence of irrigation on the analyzed variables and productivity
id UFSM_54afa74e16aa85ad0112a1b32ec50cf8
oai_identifier_str oai:repositorio.ufsm.br:1/29498
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learningWater supply and vegetation indices for corn yield estimation with machine learningAgricultura de precisãoCiência de dadosAeronaves remotamente pilotadasPrecision agricultureMachine learningRemotely piloted aircraftCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThe development and productivity of maize crops depend crucially on water availability, making this variable extremely important for achieving high levels of productivity. In this regard, the study aimed to investigate the influence of water supply on crop development and productivity, utilizing factorial multivariate analysis (FMA) and artificial neural networks (ANNs). The study was conducted in two environments, one irrigated and one non-irrigated. Irrigation was carried out using a central pivot that applied a cumulative water depth of 36.25 mm throughout the growing cycle. Four microstations were installed in each environment, equipped with soil moisture sensors and measurements of precipitation (rainfall and irrigation). During the phenological stages, remotely piloted aircraft flights and multispectral sensors were conducted to generate vegetation indices. Data analysis showed that irrigation significantly altered the productive system, even with the application of just over 10% of the recommended irrigation. In the relationships between variables in the non-irrigated environment, the influence of a severe water deficit from mid-November/21 to mid-January/22 was observed, reflected by stress-related vegetation indices (PSRI), low productivity, and dependence on precipitation. In the irrigated environment, the addition of 36 mm through three irrigations during the critical period caused significant changes. The plants exhibited greater vegetative vigor and physiological activity, resulting in higher productivity of 7.81 t ha−¹ , a 46.35% increase compared to the non-irrigated environment (4.19 t ha−¹ ). ANNs were used to estimate maize productivity, and their estimates were influenced by variables such as soil water content measurement by sensors and the PSRI vegetation index. The ANNs presented specific models for each environment in the maize production system, with a (6-4-1) architecture consisting of 6 neurons, with a focus on the participation of soil sensor variables in the 10cm and 30cm layers and the PSRI vegetation index in the input layers. It was concluded that irrigation significantly altered the maize production system, and the FMA analysis detected the influence of irrigation on the analyzed variables and productivityO desenvolvimento e a produtividade da cultura do milho dependem crucialmente da disponibilidade hídrica, tornando essa variável de extrema importância para o alcance de altos níveis de produtividade. Nesse sentido, o estudo teve como objetivo verificar a influência do aporte hídrico no desenvolvimento e produtividade da cultura, utilizando análise multivariada fatorial (AF) e redes neurais artificiais (RNA). O estudo foi realizado em dois ambientes, um irrigado e outro não irrigado. A irrigação foi realizada com um pivô central que aplicou uma lâmina acumulada de 36,25 mm em todo o ciclo. Foram instaladas quatro microestações em cada ambiente, com sensores de umidade de solo e medidas de precipitação (Chuva e Irrigação). Durante os estádios fenológicos, foram realizados voos com aeronave remotamente pilotada e sensor multiespectral para a geração de índices de vegetação. A análise de dados mostrou que a irrigação alterou significativamente o sistema produtivo, mesmo com a aplicação de pouco mais de 10% da irrigação recomendada. Nas relações das variáveis no ambiente não irrigado, foi observada a influência do forte déficit hídrico de meados de novembro/21 a meados de janeiro/22, refletido pelos índices de vegetação relacionados a estresse (PSRI), baixa produtividade e dependência da precipitação.Já no ambiente irrigado, os 36 mm adicionados em três irrigações no período crítico causaram alterações significativas. As plantas apresentaram maior vigor vegetativo e atividade fisiológica, resultando em produtividade superior, de 7,81 t ha−¹ , 46,35% em relação ao ambiente não irrigado, 4,19 t ha−¹ .A RNA foi utilizada para estimar a produtividade do milho e suas estimativas foram influenciadas por variáveis como a medição do conteúdo de água no solo por sensores e o índice de vegetação PSRI. A RNA apresentou modelos específicos para cada ambiente no sistema produtivo de milho, com a arquitetura (6-4-1) de 6 neurônios e com destaque para a participação das variáveis de sensores de solo nas camadas de 10cm e 30cm e o índice de vegetação PSRI nas camadas de entrada.Concluiu-se que a irrigação alterou significativamente o sistema produtivo de milho, e que a análise AF detectou a influência da irrigação nas variáveis analisadas e na produtividade.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoColégio Politécnico da UFSMAmaral, Lúcio de Paulahttp://lattes.cnpq.br/6612592358172016Sebem, ElódioZamberlan, João FernandoAvozani, Amanda2023-06-19T17:02:31Z2023-06-19T17:02:31Z2023-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/29498ark:/26339/001300000vbjpporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-06-19T17:02:32Zoai:repositorio.ufsm.br:1/29498Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-06-19T17:02:32Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
Water supply and vegetation indices for corn yield estimation with machine learning
title Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
spellingShingle Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
Avozani, Amanda
Agricultura de precisão
Ciência de dados
Aeronaves remotamente pilotadas
Precision agriculture
Machine learning
Remotely piloted aircraft
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
title_full Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
title_fullStr Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
title_full_unstemmed Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
title_sort Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
author Avozani, Amanda
author_facet Avozani, Amanda
author_role author
dc.contributor.none.fl_str_mv Amaral, Lúcio de Paula
http://lattes.cnpq.br/6612592358172016
Sebem, Elódio
Zamberlan, João Fernando
dc.contributor.author.fl_str_mv Avozani, Amanda
dc.subject.por.fl_str_mv Agricultura de precisão
Ciência de dados
Aeronaves remotamente pilotadas
Precision agriculture
Machine learning
Remotely piloted aircraft
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Agricultura de precisão
Ciência de dados
Aeronaves remotamente pilotadas
Precision agriculture
Machine learning
Remotely piloted aircraft
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description The development and productivity of maize crops depend crucially on water availability, making this variable extremely important for achieving high levels of productivity. In this regard, the study aimed to investigate the influence of water supply on crop development and productivity, utilizing factorial multivariate analysis (FMA) and artificial neural networks (ANNs). The study was conducted in two environments, one irrigated and one non-irrigated. Irrigation was carried out using a central pivot that applied a cumulative water depth of 36.25 mm throughout the growing cycle. Four microstations were installed in each environment, equipped with soil moisture sensors and measurements of precipitation (rainfall and irrigation). During the phenological stages, remotely piloted aircraft flights and multispectral sensors were conducted to generate vegetation indices. Data analysis showed that irrigation significantly altered the productive system, even with the application of just over 10% of the recommended irrigation. In the relationships between variables in the non-irrigated environment, the influence of a severe water deficit from mid-November/21 to mid-January/22 was observed, reflected by stress-related vegetation indices (PSRI), low productivity, and dependence on precipitation. In the irrigated environment, the addition of 36 mm through three irrigations during the critical period caused significant changes. The plants exhibited greater vegetative vigor and physiological activity, resulting in higher productivity of 7.81 t ha−¹ , a 46.35% increase compared to the non-irrigated environment (4.19 t ha−¹ ). ANNs were used to estimate maize productivity, and their estimates were influenced by variables such as soil water content measurement by sensors and the PSRI vegetation index. The ANNs presented specific models for each environment in the maize production system, with a (6-4-1) architecture consisting of 6 neurons, with a focus on the participation of soil sensor variables in the 10cm and 30cm layers and the PSRI vegetation index in the input layers. It was concluded that irrigation significantly altered the maize production system, and the FMA analysis detected the influence of irrigation on the analyzed variables and productivity
publishDate 2023
dc.date.none.fl_str_mv 2023-06-19T17:02:31Z
2023-06-19T17:02:31Z
2023-03-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/29498
dc.identifier.dark.fl_str_mv ark:/26339/001300000vbjp
url http://repositorio.ufsm.br/handle/1/29498
identifier_str_mv ark:/26339/001300000vbjp
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172401054351360