Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000vbjp |
Texto Completo: | http://repositorio.ufsm.br/handle/1/29498 |
Resumo: | The development and productivity of maize crops depend crucially on water availability, making this variable extremely important for achieving high levels of productivity. In this regard, the study aimed to investigate the influence of water supply on crop development and productivity, utilizing factorial multivariate analysis (FMA) and artificial neural networks (ANNs). The study was conducted in two environments, one irrigated and one non-irrigated. Irrigation was carried out using a central pivot that applied a cumulative water depth of 36.25 mm throughout the growing cycle. Four microstations were installed in each environment, equipped with soil moisture sensors and measurements of precipitation (rainfall and irrigation). During the phenological stages, remotely piloted aircraft flights and multispectral sensors were conducted to generate vegetation indices. Data analysis showed that irrigation significantly altered the productive system, even with the application of just over 10% of the recommended irrigation. In the relationships between variables in the non-irrigated environment, the influence of a severe water deficit from mid-November/21 to mid-January/22 was observed, reflected by stress-related vegetation indices (PSRI), low productivity, and dependence on precipitation. In the irrigated environment, the addition of 36 mm through three irrigations during the critical period caused significant changes. The plants exhibited greater vegetative vigor and physiological activity, resulting in higher productivity of 7.81 t ha−¹ , a 46.35% increase compared to the non-irrigated environment (4.19 t ha−¹ ). ANNs were used to estimate maize productivity, and their estimates were influenced by variables such as soil water content measurement by sensors and the PSRI vegetation index. The ANNs presented specific models for each environment in the maize production system, with a (6-4-1) architecture consisting of 6 neurons, with a focus on the participation of soil sensor variables in the 10cm and 30cm layers and the PSRI vegetation index in the input layers. It was concluded that irrigation significantly altered the maize production system, and the FMA analysis detected the influence of irrigation on the analyzed variables and productivity |
id |
UFSM_54afa74e16aa85ad0112a1b32ec50cf8 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/29498 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learningWater supply and vegetation indices for corn yield estimation with machine learningAgricultura de precisãoCiência de dadosAeronaves remotamente pilotadasPrecision agricultureMachine learningRemotely piloted aircraftCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThe development and productivity of maize crops depend crucially on water availability, making this variable extremely important for achieving high levels of productivity. In this regard, the study aimed to investigate the influence of water supply on crop development and productivity, utilizing factorial multivariate analysis (FMA) and artificial neural networks (ANNs). The study was conducted in two environments, one irrigated and one non-irrigated. Irrigation was carried out using a central pivot that applied a cumulative water depth of 36.25 mm throughout the growing cycle. Four microstations were installed in each environment, equipped with soil moisture sensors and measurements of precipitation (rainfall and irrigation). During the phenological stages, remotely piloted aircraft flights and multispectral sensors were conducted to generate vegetation indices. Data analysis showed that irrigation significantly altered the productive system, even with the application of just over 10% of the recommended irrigation. In the relationships between variables in the non-irrigated environment, the influence of a severe water deficit from mid-November/21 to mid-January/22 was observed, reflected by stress-related vegetation indices (PSRI), low productivity, and dependence on precipitation. In the irrigated environment, the addition of 36 mm through three irrigations during the critical period caused significant changes. The plants exhibited greater vegetative vigor and physiological activity, resulting in higher productivity of 7.81 t ha−¹ , a 46.35% increase compared to the non-irrigated environment (4.19 t ha−¹ ). ANNs were used to estimate maize productivity, and their estimates were influenced by variables such as soil water content measurement by sensors and the PSRI vegetation index. The ANNs presented specific models for each environment in the maize production system, with a (6-4-1) architecture consisting of 6 neurons, with a focus on the participation of soil sensor variables in the 10cm and 30cm layers and the PSRI vegetation index in the input layers. It was concluded that irrigation significantly altered the maize production system, and the FMA analysis detected the influence of irrigation on the analyzed variables and productivityO desenvolvimento e a produtividade da cultura do milho dependem crucialmente da disponibilidade hídrica, tornando essa variável de extrema importância para o alcance de altos níveis de produtividade. Nesse sentido, o estudo teve como objetivo verificar a influência do aporte hídrico no desenvolvimento e produtividade da cultura, utilizando análise multivariada fatorial (AF) e redes neurais artificiais (RNA). O estudo foi realizado em dois ambientes, um irrigado e outro não irrigado. A irrigação foi realizada com um pivô central que aplicou uma lâmina acumulada de 36,25 mm em todo o ciclo. Foram instaladas quatro microestações em cada ambiente, com sensores de umidade de solo e medidas de precipitação (Chuva e Irrigação). Durante os estádios fenológicos, foram realizados voos com aeronave remotamente pilotada e sensor multiespectral para a geração de índices de vegetação. A análise de dados mostrou que a irrigação alterou significativamente o sistema produtivo, mesmo com a aplicação de pouco mais de 10% da irrigação recomendada. Nas relações das variáveis no ambiente não irrigado, foi observada a influência do forte déficit hídrico de meados de novembro/21 a meados de janeiro/22, refletido pelos índices de vegetação relacionados a estresse (PSRI), baixa produtividade e dependência da precipitação.Já no ambiente irrigado, os 36 mm adicionados em três irrigações no período crítico causaram alterações significativas. As plantas apresentaram maior vigor vegetativo e atividade fisiológica, resultando em produtividade superior, de 7,81 t ha−¹ , 46,35% em relação ao ambiente não irrigado, 4,19 t ha−¹ .A RNA foi utilizada para estimar a produtividade do milho e suas estimativas foram influenciadas por variáveis como a medição do conteúdo de água no solo por sensores e o índice de vegetação PSRI. A RNA apresentou modelos específicos para cada ambiente no sistema produtivo de milho, com a arquitetura (6-4-1) de 6 neurônios e com destaque para a participação das variáveis de sensores de solo nas camadas de 10cm e 30cm e o índice de vegetação PSRI nas camadas de entrada.Concluiu-se que a irrigação alterou significativamente o sistema produtivo de milho, e que a análise AF detectou a influência da irrigação nas variáveis analisadas e na produtividade.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoColégio Politécnico da UFSMAmaral, Lúcio de Paulahttp://lattes.cnpq.br/6612592358172016Sebem, ElódioZamberlan, João FernandoAvozani, Amanda2023-06-19T17:02:31Z2023-06-19T17:02:31Z2023-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/29498ark:/26339/001300000vbjpporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-06-19T17:02:32Zoai:repositorio.ufsm.br:1/29498Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-06-19T17:02:32Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning Water supply and vegetation indices for corn yield estimation with machine learning |
title |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning |
spellingShingle |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning Avozani, Amanda Agricultura de precisão Ciência de dados Aeronaves remotamente pilotadas Precision agriculture Machine learning Remotely piloted aircraft CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning |
title_full |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning |
title_fullStr |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning |
title_full_unstemmed |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning |
title_sort |
Suprimento hídrico e índices de vegetação para estimativa de produtividade de milho com machine learning |
author |
Avozani, Amanda |
author_facet |
Avozani, Amanda |
author_role |
author |
dc.contributor.none.fl_str_mv |
Amaral, Lúcio de Paula http://lattes.cnpq.br/6612592358172016 Sebem, Elódio Zamberlan, João Fernando |
dc.contributor.author.fl_str_mv |
Avozani, Amanda |
dc.subject.por.fl_str_mv |
Agricultura de precisão Ciência de dados Aeronaves remotamente pilotadas Precision agriculture Machine learning Remotely piloted aircraft CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Agricultura de precisão Ciência de dados Aeronaves remotamente pilotadas Precision agriculture Machine learning Remotely piloted aircraft CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
The development and productivity of maize crops depend crucially on water availability, making this variable extremely important for achieving high levels of productivity. In this regard, the study aimed to investigate the influence of water supply on crop development and productivity, utilizing factorial multivariate analysis (FMA) and artificial neural networks (ANNs). The study was conducted in two environments, one irrigated and one non-irrigated. Irrigation was carried out using a central pivot that applied a cumulative water depth of 36.25 mm throughout the growing cycle. Four microstations were installed in each environment, equipped with soil moisture sensors and measurements of precipitation (rainfall and irrigation). During the phenological stages, remotely piloted aircraft flights and multispectral sensors were conducted to generate vegetation indices. Data analysis showed that irrigation significantly altered the productive system, even with the application of just over 10% of the recommended irrigation. In the relationships between variables in the non-irrigated environment, the influence of a severe water deficit from mid-November/21 to mid-January/22 was observed, reflected by stress-related vegetation indices (PSRI), low productivity, and dependence on precipitation. In the irrigated environment, the addition of 36 mm through three irrigations during the critical period caused significant changes. The plants exhibited greater vegetative vigor and physiological activity, resulting in higher productivity of 7.81 t ha−¹ , a 46.35% increase compared to the non-irrigated environment (4.19 t ha−¹ ). ANNs were used to estimate maize productivity, and their estimates were influenced by variables such as soil water content measurement by sensors and the PSRI vegetation index. The ANNs presented specific models for each environment in the maize production system, with a (6-4-1) architecture consisting of 6 neurons, with a focus on the participation of soil sensor variables in the 10cm and 30cm layers and the PSRI vegetation index in the input layers. It was concluded that irrigation significantly altered the maize production system, and the FMA analysis detected the influence of irrigation on the analyzed variables and productivity |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-19T17:02:31Z 2023-06-19T17:02:31Z 2023-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/29498 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000vbjp |
url |
http://repositorio.ufsm.br/handle/1/29498 |
identifier_str_mv |
ark:/26339/001300000vbjp |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Colégio Politécnico da UFSM |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agricultura de Precisão Colégio Politécnico da UFSM |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172401054351360 |