Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica

Detalhes bibliográficos
Autor(a) principal: Silva, Michel Rocha da
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000008tfn
Texto Completo: http://repositorio.ufsm.br/handle/1/5139
Resumo: The objective of this study was to define a methodology for monitoring a flooded rice crop forecast for Rio Grande do Sul, and to evaluate the effect of the flood time on growth, development and rice productivity. Two experiments were conducted during the 2013/14 growing season, using a randomized blocks design with four replications. The treatments in Experiment 1 were flooding in V3, V5, V8 and V9, and in Experiment 2 the treatments were flooding in V5, V8, V9 and V10. The onset of flooding did not influence the emission of leaves, the final leaf number, the final number of tillers and crop development. Leaf growth rate is affected by the onset of flooding when rainfall was less than the crop evapotranspiration. It is not clear if kernel yield is or not affected by the time that flooding starts. To define a methodology for monitoring a flooded rice crop forecast for Rio Grande do Sul, the SimulArroz rice model were coupled to regional climate model RegCM4 for generation the daily seasonal forecast. Nine members of RegCM4 model were used, with different parameterization (01, 07, 10, 13, 19, 22, 31, 34 and 37) and four boots (01, 02, 3:04) per month, with daily data of minimum temperature, maximum temperature and solar radiation. Three points with 45 km resolution grid were used for generating data of the minimum temperature (°C) maximum temperature (°C) and solar radiation (MJ m-2 day-1), covering the municipalities of Restinga Seca, Itaqui and Uruguaiana. The predictions were compared with SimulArroz crop monitoring with INMET automatic weather stations data and data collected in three cropping areas in Restinga Seca and 2 in Itaqui. The compared variables were leaf emission (Haun Stage - HS), final leaf number, development stage (COUNCE et al., 2000) and productivity (Mg ha-1). The best predicting irrigated rice crop forecast in Rio Grande do Sul were: member 31 minimum temperature, member 34 maximum temperature and a member 01 solar radiation (M31M34M01); minimum and maximum temperature and solar radiation boot 01 member 19 (M19S01) and; minimum and maximum temperature and solar radiation boot 03 member 01 (M01S03). The seasonal forecast generated by RegCM4 model coupled to SimulArroz rice model made possible the numerical prediction of rice crop in Rio Grande do Sul.
id UFSM_55dbf997cbee451965bcc02ce35ddc17
oai_identifier_str oai:repositorio.ufsm.br:1/5139
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numéricaPrevisão de safra de arroz no estado do Rio Grande do Sul através de modelagem numéricaOryza sativaSimulArrozRegCM4Acompanhamento de safraÉpoca de entrada da águaOryza sativaSimulArrozRegCM4Crop monitoringFlood timeCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThe objective of this study was to define a methodology for monitoring a flooded rice crop forecast for Rio Grande do Sul, and to evaluate the effect of the flood time on growth, development and rice productivity. Two experiments were conducted during the 2013/14 growing season, using a randomized blocks design with four replications. The treatments in Experiment 1 were flooding in V3, V5, V8 and V9, and in Experiment 2 the treatments were flooding in V5, V8, V9 and V10. The onset of flooding did not influence the emission of leaves, the final leaf number, the final number of tillers and crop development. Leaf growth rate is affected by the onset of flooding when rainfall was less than the crop evapotranspiration. It is not clear if kernel yield is or not affected by the time that flooding starts. To define a methodology for monitoring a flooded rice crop forecast for Rio Grande do Sul, the SimulArroz rice model were coupled to regional climate model RegCM4 for generation the daily seasonal forecast. Nine members of RegCM4 model were used, with different parameterization (01, 07, 10, 13, 19, 22, 31, 34 and 37) and four boots (01, 02, 3:04) per month, with daily data of minimum temperature, maximum temperature and solar radiation. Three points with 45 km resolution grid were used for generating data of the minimum temperature (°C) maximum temperature (°C) and solar radiation (MJ m-2 day-1), covering the municipalities of Restinga Seca, Itaqui and Uruguaiana. The predictions were compared with SimulArroz crop monitoring with INMET automatic weather stations data and data collected in three cropping areas in Restinga Seca and 2 in Itaqui. The compared variables were leaf emission (Haun Stage - HS), final leaf number, development stage (COUNCE et al., 2000) and productivity (Mg ha-1). The best predicting irrigated rice crop forecast in Rio Grande do Sul were: member 31 minimum temperature, member 34 maximum temperature and a member 01 solar radiation (M31M34M01); minimum and maximum temperature and solar radiation boot 01 member 19 (M19S01) and; minimum and maximum temperature and solar radiation boot 03 member 01 (M01S03). The seasonal forecast generated by RegCM4 model coupled to SimulArroz rice model made possible the numerical prediction of rice crop in Rio Grande do Sul.Conselho Nacional de Desenvolvimento Científico e TecnológicoO objetivo deste trabalho foi definir uma metodologia para acompanhamento e previsão de safra de arroz irrigado para o Rio Grande do Sul, e avaliar o efeito da época de inundação sobre variáveis de crescimento, desenvolvimento e produtividade de arroz irrigado. Foram conduzidos dois experimentos durante o ano agrícola 2013/14, em delineamento experimental de blocos ao acaso, com quatro repetições. Os tratamentos no Experimento 1 foram: inundação em V3, V5, V8 e V9, e no Experimento 2 os tratamentos foram: inundação em V5, V8, V9 e V10. A época de inundação não influenciou a emissão de folhas, o número final de folhas, o número final de perfilhos e o desenvolvimento da cultura. A taxa de crescimento foliar quando a precipitação foi menor que a evapotranspiração da cultura do arroz. Não é clara se a produtividade de grãos é ou não afetada pela época de inundação do solo. Para definir uma metodologia para acompanhamento e previsão de safra de arroz irrigado para o Rio Grande do Sul, foi utilizado como modelo de arroz o SimulArroz, acoplado ao modelo climático regional RegCM4 para geração dos dados meteorológicos diários da previsão sazonal. Foram utilizados nove membros do modelo RegCM4, com diferentes parametrizações (01, 07, 10, 13, 19, 22, 31, 34 e 37), e quatro inicializações (01, 02, 03 e 04) por mês, com dados diários de temperatura mínima, temperatura máxima e radiação solar.Três pontos de resolução de 45 km de grade foram utilizados para geração dos dados de temperatura mínima (°C), temperatura máxima (°C) e radiação solar (MJ m-2 dia-1), abrangendo os municípios de Restinga Seca, Itaqui e Uruguaiana. As previsões foram comparadas com o acompanhamento de safra do SimulArroz rodado com dados das estações meteorológicas automáticas do INMET, e com dados observados em 3 lavouras em Restinga Seca e 2 em Itaqui. As variáveis comparadas foram emissão de folhas (Haun Stage - HS), número final de folhas, estádio de desenvolvimento (COUNCE et al., 2000) e produtividade (Mg ha-1). As melhores previsões para realizar previsão de safra de arroz irrigado no Rio Grande do Sul foram: temperatura mínima do membro 31, temperatura máxima do membro 34 e radiação solar do membro 01 (M31M34M01); temperatura mínima, máxima e radiação solar da inicialização 01 do membro 19 (M19S01) e; temperatura mínima, máxima e radiação solar da inicialização 03 do membro 01 (M01S03). A previsão sazonal gerada pelo modelo RegCM4 acoplado ao modelo de arroz SimulArroz possibilitou a previsão numérica de safra de arroz para o Rio Grande do Sul.Universidade Federal de Santa MariaBRAgronomiaUFSMPrograma de Pós-Graduação em AgronomiaStreck, Nereu Augustohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721150P1Ferraz, Simone Erotildes Teleginskihttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4794248T4Steinmetz, Silviohttp://lattes.cnpq.br/3723393541471886Silva, Michel Rocha da2017-05-122017-05-122015-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfSILVA, Michel Rocha da. Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica. 2015. 101 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2015.http://repositorio.ufsm.br/handle/1/5139ark:/26339/0013000008tfnporinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2017-07-25T14:13:21Zoai:repositorio.ufsm.br:1/5139Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2017-07-25T14:13:21Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
title Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
spellingShingle Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
Silva, Michel Rocha da
Oryza sativa
SimulArroz
RegCM4
Acompanhamento de safra
Época de entrada da água
Oryza sativa
SimulArroz
RegCM4
Crop monitoring
Flood time
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
title_full Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
title_fullStr Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
title_full_unstemmed Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
title_sort Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica
author Silva, Michel Rocha da
author_facet Silva, Michel Rocha da
author_role author
dc.contributor.none.fl_str_mv Streck, Nereu Augusto
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4721150P1
Ferraz, Simone Erotildes Teleginski
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4794248T4
Steinmetz, Silvio
http://lattes.cnpq.br/3723393541471886
dc.contributor.author.fl_str_mv Silva, Michel Rocha da
dc.subject.por.fl_str_mv Oryza sativa
SimulArroz
RegCM4
Acompanhamento de safra
Época de entrada da água
Oryza sativa
SimulArroz
RegCM4
Crop monitoring
Flood time
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Oryza sativa
SimulArroz
RegCM4
Acompanhamento de safra
Época de entrada da água
Oryza sativa
SimulArroz
RegCM4
Crop monitoring
Flood time
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description The objective of this study was to define a methodology for monitoring a flooded rice crop forecast for Rio Grande do Sul, and to evaluate the effect of the flood time on growth, development and rice productivity. Two experiments were conducted during the 2013/14 growing season, using a randomized blocks design with four replications. The treatments in Experiment 1 were flooding in V3, V5, V8 and V9, and in Experiment 2 the treatments were flooding in V5, V8, V9 and V10. The onset of flooding did not influence the emission of leaves, the final leaf number, the final number of tillers and crop development. Leaf growth rate is affected by the onset of flooding when rainfall was less than the crop evapotranspiration. It is not clear if kernel yield is or not affected by the time that flooding starts. To define a methodology for monitoring a flooded rice crop forecast for Rio Grande do Sul, the SimulArroz rice model were coupled to regional climate model RegCM4 for generation the daily seasonal forecast. Nine members of RegCM4 model were used, with different parameterization (01, 07, 10, 13, 19, 22, 31, 34 and 37) and four boots (01, 02, 3:04) per month, with daily data of minimum temperature, maximum temperature and solar radiation. Three points with 45 km resolution grid were used for generating data of the minimum temperature (°C) maximum temperature (°C) and solar radiation (MJ m-2 day-1), covering the municipalities of Restinga Seca, Itaqui and Uruguaiana. The predictions were compared with SimulArroz crop monitoring with INMET automatic weather stations data and data collected in three cropping areas in Restinga Seca and 2 in Itaqui. The compared variables were leaf emission (Haun Stage - HS), final leaf number, development stage (COUNCE et al., 2000) and productivity (Mg ha-1). The best predicting irrigated rice crop forecast in Rio Grande do Sul were: member 31 minimum temperature, member 34 maximum temperature and a member 01 solar radiation (M31M34M01); minimum and maximum temperature and solar radiation boot 01 member 19 (M19S01) and; minimum and maximum temperature and solar radiation boot 03 member 01 (M01S03). The seasonal forecast generated by RegCM4 model coupled to SimulArroz rice model made possible the numerical prediction of rice crop in Rio Grande do Sul.
publishDate 2015
dc.date.none.fl_str_mv 2015-02-19
2017-05-12
2017-05-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, Michel Rocha da. Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica. 2015. 101 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2015.
http://repositorio.ufsm.br/handle/1/5139
dc.identifier.dark.fl_str_mv ark:/26339/0013000008tfn
identifier_str_mv SILVA, Michel Rocha da. Previsão de safra de arroz no estado do Rio Grande do Sul através de modelagem numérica. 2015. 101 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2015.
ark:/26339/0013000008tfn
url http://repositorio.ufsm.br/handle/1/5139
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172306724454400