Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/00130000097rt |
Texto Completo: | http://repositorio.ufsm.br/handle/1/17036 |
Resumo: | Data processing is commonly performed by big data systems, in traditional architectures, performing data manipulation offline. However, with the need to get results with low latency, there is the use of other architectures, such as LAMBDA and Kappa for the implementation of big data systems, directed to the processing of data streams. Several studies in the literature begin to apply this new model of architecture for different purposes, as well as the use of different types of tools to make it possible to implement it. In This scenario some systems are developed with these molds to monitor and process the flow of data generated by network traffic, employing different types of analysis on the collected data, to get from information about network bandwidth consumption to identify anomalies that occur. In this context, this work aims to develop a system based on the Lambda architecture, applied to the monitoring and processing of the data flow of network traffic, performing the integration of different open source tools. Each tool is responsible for certain functionality implemented, from monitoring and collecting network traffic, information transport, normalization and data storage, to subsequently perform analyses thereof and detect anomalies originated by DDoS attacks, brute force, and port scanning on certain protocols. Regarding the connections classified as anomalous, information pertinent to the IP responsible for originating this connection will be obtained. The experimental analysis of the system occurs with the use of a controlled set of data that has several anomalies, as well as those that must be detected by the system. Shortly after this step, the system is applied to process data that was collected from a local network for eleven days, totaling more than 14 million connections. The experimental results obtained on the actual network traffic present the three types of anomalies that were considered in this study, as well as information about the IPs responsible for them, identifying the country and its respective organization. |
id |
UFSM_61d5c342b746be2843379e24de9b3c47 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/17036 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da redeA flow processing system applied to network analysis and monitoringArquitetura lambdaBig dataTráfego de redeDetecção de ataquesArchitecture lambdaNetwork trafficDetection of attacksCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOData processing is commonly performed by big data systems, in traditional architectures, performing data manipulation offline. However, with the need to get results with low latency, there is the use of other architectures, such as LAMBDA and Kappa for the implementation of big data systems, directed to the processing of data streams. Several studies in the literature begin to apply this new model of architecture for different purposes, as well as the use of different types of tools to make it possible to implement it. In This scenario some systems are developed with these molds to monitor and process the flow of data generated by network traffic, employing different types of analysis on the collected data, to get from information about network bandwidth consumption to identify anomalies that occur. In this context, this work aims to develop a system based on the Lambda architecture, applied to the monitoring and processing of the data flow of network traffic, performing the integration of different open source tools. Each tool is responsible for certain functionality implemented, from monitoring and collecting network traffic, information transport, normalization and data storage, to subsequently perform analyses thereof and detect anomalies originated by DDoS attacks, brute force, and port scanning on certain protocols. Regarding the connections classified as anomalous, information pertinent to the IP responsible for originating this connection will be obtained. The experimental analysis of the system occurs with the use of a controlled set of data that has several anomalies, as well as those that must be detected by the system. Shortly after this step, the system is applied to process data that was collected from a local network for eleven days, totaling more than 14 million connections. The experimental results obtained on the actual network traffic present the three types of anomalies that were considered in this study, as well as information about the IPs responsible for them, identifying the country and its respective organization.Processamentos de dados são comumente realizados por sistemas Big Data, em arquiteturas tradicionais, efetuando a manipulação dos dados de forma offline. No entanto, com a necessidade de obter resultados com baixa latência, ocorre o uso de outras arquiteturas, como Lambda e Kappa para implementação de sistemas Big Data, direcionadas ao processamento de fluxos de dados. Diversos estudos na literatura começam a aplicar esse novo modelo de arquitetura para diferentes fins, assim como a utilização de diferentes tipos de ferramentas para que seja possível efetuar sua implementação. Neste cenário alguns sistemas são desenvolvidos com estes moldes para monitorar e processar o fluxo de dados gerados pelo tráfego de rede, empregando diferentes tipos de análises sobre os dados coletados, para obter desde informações sobre o consumo de banda da rede a identificar anomalias que ocorrem. Nesse contexto, este trabalho tem como objetivo o desenvolvimento de um sistema com base na arquitetura Lambda, aplicado ao monitoramento e processamento do fluxo de dados do tráfego de rede, realizando a integração de diferentes ferramentas de código aberto. Cada ferramenta é responsável por determinada funcionalidade implementada, desde o monitoramento e coleta do tráfego de rede, transporte de informações, normalização e armazenamento dos dados, para posteriormente efetuar análises dos mesmos e detectar anomalias originadas por ataques DDoS, força bruta e varredura de portas sobre determinados protocolos. Sobre as conexões classificadas como anômalas, obter-se-á informações pertinentes ao IP responsável por originar essa conexão. A análise experimental do sistema ocorre com o uso de um conjunto de dados controlado que possui diversas anomalias, bem como as que devem ser detectadas pelo sistema. Logo após essa etapa, o sistema é aplicado para processar dados que foram coletados de uma rede local durante onze dias, totalizando mais de quatorze milhões de conexões. Os resultados experimentais obtidos sobre o tráfego de rede real apresentam os três tipos de anomalias que foram consideradas nesse estudo, assim como traz informações sobre os IPs responsáveis pelas mesmas, identificando o país e sua respectiva organização.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em Ciência da ComputaçãoCentro de TecnologiaLima, João Vicente Ferreirahttp://lattes.cnpq.br/6266546896929217Stein, Benhur de Oliveirahttp://lattes.cnpq.br/4640320476003795Koslovski, Guilherme Piêgashttp://lattes.cnpq.br/2749773427704993Haas, Alexsander2019-06-18T18:59:39Z2019-06-18T18:59:39Z2019-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/17036ark:/26339/00130000097rtporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-06-19T06:00:30Zoai:repositorio.ufsm.br:1/17036Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-06-19T06:00:30Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede A flow processing system applied to network analysis and monitoring |
title |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede |
spellingShingle |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede Haas, Alexsander Arquitetura lambda Big data Tráfego de rede Detecção de ataques Architecture lambda Network traffic Detection of attacks CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede |
title_full |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede |
title_fullStr |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede |
title_full_unstemmed |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede |
title_sort |
Um sistema por processamento de fluxos aplicado à análise e monitoramento da rede |
author |
Haas, Alexsander |
author_facet |
Haas, Alexsander |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lima, João Vicente Ferreira http://lattes.cnpq.br/6266546896929217 Stein, Benhur de Oliveira http://lattes.cnpq.br/4640320476003795 Koslovski, Guilherme Piêgas http://lattes.cnpq.br/2749773427704993 |
dc.contributor.author.fl_str_mv |
Haas, Alexsander |
dc.subject.por.fl_str_mv |
Arquitetura lambda Big data Tráfego de rede Detecção de ataques Architecture lambda Network traffic Detection of attacks CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
Arquitetura lambda Big data Tráfego de rede Detecção de ataques Architecture lambda Network traffic Detection of attacks CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Data processing is commonly performed by big data systems, in traditional architectures, performing data manipulation offline. However, with the need to get results with low latency, there is the use of other architectures, such as LAMBDA and Kappa for the implementation of big data systems, directed to the processing of data streams. Several studies in the literature begin to apply this new model of architecture for different purposes, as well as the use of different types of tools to make it possible to implement it. In This scenario some systems are developed with these molds to monitor and process the flow of data generated by network traffic, employing different types of analysis on the collected data, to get from information about network bandwidth consumption to identify anomalies that occur. In this context, this work aims to develop a system based on the Lambda architecture, applied to the monitoring and processing of the data flow of network traffic, performing the integration of different open source tools. Each tool is responsible for certain functionality implemented, from monitoring and collecting network traffic, information transport, normalization and data storage, to subsequently perform analyses thereof and detect anomalies originated by DDoS attacks, brute force, and port scanning on certain protocols. Regarding the connections classified as anomalous, information pertinent to the IP responsible for originating this connection will be obtained. The experimental analysis of the system occurs with the use of a controlled set of data that has several anomalies, as well as those that must be detected by the system. Shortly after this step, the system is applied to process data that was collected from a local network for eleven days, totaling more than 14 million connections. The experimental results obtained on the actual network traffic present the three types of anomalies that were considered in this study, as well as information about the IPs responsible for them, identifying the country and its respective organization. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-18T18:59:39Z 2019-06-18T18:59:39Z 2019-03-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/17036 |
dc.identifier.dark.fl_str_mv |
ark:/26339/00130000097rt |
url |
http://repositorio.ufsm.br/handle/1/17036 |
identifier_str_mv |
ark:/26339/00130000097rt |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172308927512576 |