Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa

Detalhes bibliográficos
Autor(a) principal: Raddatz, Greice Carine
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000005drj
Texto Completo: http://repositorio.ufsm.br/handle/1/25126
Resumo: The development of products containing one or more bioactive compounds has become an attractive way to the consumer as a way to establish a better quality of life. Among the bioactive compounds, probiotics and antioxidant compounds stand out, however, their application in food matrices becomes limited as they are extremely sensitive to adverse conditions. Therefore, new alternatives to introduce these compounds to the consumer's daily life are needed. Microencapsulation is a promising, safe and effective technology for the delivery of several bioactive compounds. Among the various microencapsulation techniques, there is the external ionic gelation. The objective of this work was to develop alginate microparticles containing the probiotic Lactobacillus casei LC03 in combination with red onion (Allium cepa L.) peel extract at different concentrations (5, 20 and 40%), using the external ionic gelation technique (Article II), for later application in a food matrix (Article III). Article II evaluated the viability of probiotics under simulated gastrointestinal conditions, during storage at -18, 7 and 25 °C for 90 days and resistance of microparticles to heat treatment (72 °C / 15 sec and 63 °C / 30 min). In addition to the morphology, average diameter and encapsulation efficiency of microparticles. Finally, in Article III, microparticles were added to strawberry pulp, where microbiological and physicochemical analyzes of the pulp, gastrointestinal viability and shelf life of the probiotics in the product were performed, as well as size, morphology and encapsulation efficiency of the microparticles. The microparticles varied in size from 149.29 t to 167.05 μm in Article II and from 136.00 to 305.00 μm in Article III. The encapsulation efficiency of probiotics and compounds present in the extract was satisfactory in both manuscripts. The microparticles were able to protect the probiotics against heat treatment at different temperatures (Article II). In Article II, the microparticles of the treatment containing alginate + 20% extract showed better survival of the probiotic under simulated gastrointestinal conditions, as the different microparticles were applied to the strawberry pulp, the formulations with alginate and alginate + 5% extract demonstrated more satisfactory results (Article III). As for the shelf life of probiotics during storage, in Article II, when evaluating temperatures of 25, 7 and -18 °C, all microparticle formulations remained viable until the end of the experiment (90 days) at -18 °C C, which justifies the choice of frozen strawberry pulp for the application of microparticles. When applied to the pulp (Article III), the treatments containing alginate and alginate + 5% extract reached the longest period of viability (60 days). Thus, the microparticles developed in this study are viable for the development of a new functional and vegan matrix, allowing to increase the diversification of products that contain probiotics.
id UFSM_63a90ea8b5f416421ca967807f43e1ca
oai_identifier_str oai:repositorio.ufsm.br:1/25126
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externaMicroencapsulation of probiotics and bioactive extract from black onion (Allium cepa L.) peel by external ionic gelationMicroencapsulaçãoLactobacillus caseiAllium cepa L.Compostos bioativosMicroencapsulationBioactive compoundsCNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOSThe development of products containing one or more bioactive compounds has become an attractive way to the consumer as a way to establish a better quality of life. Among the bioactive compounds, probiotics and antioxidant compounds stand out, however, their application in food matrices becomes limited as they are extremely sensitive to adverse conditions. Therefore, new alternatives to introduce these compounds to the consumer's daily life are needed. Microencapsulation is a promising, safe and effective technology for the delivery of several bioactive compounds. Among the various microencapsulation techniques, there is the external ionic gelation. The objective of this work was to develop alginate microparticles containing the probiotic Lactobacillus casei LC03 in combination with red onion (Allium cepa L.) peel extract at different concentrations (5, 20 and 40%), using the external ionic gelation technique (Article II), for later application in a food matrix (Article III). Article II evaluated the viability of probiotics under simulated gastrointestinal conditions, during storage at -18, 7 and 25 °C for 90 days and resistance of microparticles to heat treatment (72 °C / 15 sec and 63 °C / 30 min). In addition to the morphology, average diameter and encapsulation efficiency of microparticles. Finally, in Article III, microparticles were added to strawberry pulp, where microbiological and physicochemical analyzes of the pulp, gastrointestinal viability and shelf life of the probiotics in the product were performed, as well as size, morphology and encapsulation efficiency of the microparticles. The microparticles varied in size from 149.29 t to 167.05 μm in Article II and from 136.00 to 305.00 μm in Article III. The encapsulation efficiency of probiotics and compounds present in the extract was satisfactory in both manuscripts. The microparticles were able to protect the probiotics against heat treatment at different temperatures (Article II). In Article II, the microparticles of the treatment containing alginate + 20% extract showed better survival of the probiotic under simulated gastrointestinal conditions, as the different microparticles were applied to the strawberry pulp, the formulations with alginate and alginate + 5% extract demonstrated more satisfactory results (Article III). As for the shelf life of probiotics during storage, in Article II, when evaluating temperatures of 25, 7 and -18 °C, all microparticle formulations remained viable until the end of the experiment (90 days) at -18 °C C, which justifies the choice of frozen strawberry pulp for the application of microparticles. When applied to the pulp (Article III), the treatments containing alginate and alginate + 5% extract reached the longest period of viability (60 days). Thus, the microparticles developed in this study are viable for the development of a new functional and vegan matrix, allowing to increase the diversification of products that contain probiotics.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO desenvolvimento de produtos contendo um ou mais compostos bioativos tem se tornado um meio atrativo ao consumidor como forma de estabelecer uma melhor qualidade de vida. Dentre os compostos bioativos, destacam-se os probióticos e os compostos antioxidantes, no entanto, sua aplicação em matrizes alimentares se torna limitada visto que são extremamente sensíveis a condições adversas. Sendo assim, novas alternativas para introduzir estes compostos ao cotidiano do consumidor são necessárias. A microencapsulação é uma tecnologia promissora, segura e eficaz para a entrega de diversos compostos bioativos. Dentre as diversas técnicas de microencapsulação, tem-se a gelificação iônica externa. O objetivo deste trabalho foi desenvolver micropartículas de alginato contendo o probiótico Lactobacillus casei LC03 em combinação com extrato de casca de cebola roxa (Allium cepa L.) em diferentes concentrações (5, 20 e 40%), por meio da técnica de gelificação iônica externa (Artigo II), para posterior aplicação em uma matriz alimentícia (Artigo III). No Artigo II foi avaliada a viabilidade dos probióticos sob condições gastrointestinais simuladas, durante armazenamento a -18, 7 e 25 °C por 90 dias e resistência das micropartículas ao tratamento térmico (72 °C / 15 seg e 63 °C / 30 min). Além da morfologia, diâmetro médio e eficiência de encapsulação das micropartículas. Por fim, no Artigo III, realizou-se a adição das micropartículas em polpa de morango, onde foram realizadas análises microbiológicas e físico-químicas da polpa, viabilidade gastrointestinal e vida útil dos probióticos no produto, além de tamanho, morfologia e eficiência de encapsulação das micropartículas. As micropartículas apresentaram variação de tamanho de 149.29 a 167.05 μm no Artigo II e de 136.00 a 305.00 μm no Artigo III. A eficiência de encapsulação dos probióticos e dos compostos presentes no extrato foi satisfatória em ambos os manuscritos. As micropartículas foram capazes de proteger os probióticos frente ao tratamento térmico nas diferentes temperaturas (Artigo II). No Artigo II, as micropartículas do tratamento contendo alginato + 20% de extrato apresentaram melhor sobrevivência do probiótico sob condições gastrointestinais simuladas, já ao se realizar a aplicação das diferentes micropartículas na polpa de morango, as formulações com alginato e alginato + 5% de extrato demonstraram resultados mais satisfatórios (Artigo III). Quanto a vida útil dos probióticos durante o armazenamento, no Artigo II, ao se avaliar as temperaturas de 25, 7 e -18 °C, todas as formulações de micropartículas se mantiveram viáveis até o final do experimento (90 dias) em -18 °C, o que justifica a escolha da polpa de morango congelada para a aplicação das micropartículas. Quando aplicadas na polpa (Artigo III), os tratamentos contendo alginato e alginato + 5% de extrato alcançaram o maior período de viabilidade (60 dias). Desta forma, as micropartículas desenvolvidas nesse estudo se mostram viáveis para o desenvolvimento de uma nova matriz funcional e vegana, permitindo aumentar a diversificação de produtos que contenham probióticos.Universidade Federal de Santa MariaBrasilCiência e Tecnologia dos AlimentosUFSMPrograma de Pós-Graduação em Ciência e Tecnologia dos AlimentosCentro de Ciências RuraisMenezes, Cristiano Ragagnin dehttp://lattes.cnpq.br/1755735245826251Barin, Juliano SmaniotoBallus, Cristiano AugustoCruz, Adriano Gomes daCavalheiro, Carlos PasqualinRaddatz, Greice Carine2022-06-29T20:06:33Z2022-06-29T20:06:33Z2022-02-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/25126ark:/26339/0013000005drjporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-29T20:06:33Zoai:repositorio.ufsm.br:1/25126Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-29T20:06:33Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
Microencapsulation of probiotics and bioactive extract from black onion (Allium cepa L.) peel by external ionic gelation
title Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
spellingShingle Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
Raddatz, Greice Carine
Microencapsulação
Lactobacillus casei
Allium cepa L.
Compostos bioativos
Microencapsulation
Bioactive compounds
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS
title_short Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
title_full Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
title_fullStr Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
title_full_unstemmed Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
title_sort Microencapsulação de probióticos e extrato bioativo de casca de cebola roxa (Allium cepa L.) por gelificação iônica externa
author Raddatz, Greice Carine
author_facet Raddatz, Greice Carine
author_role author
dc.contributor.none.fl_str_mv Menezes, Cristiano Ragagnin de
http://lattes.cnpq.br/1755735245826251
Barin, Juliano Smanioto
Ballus, Cristiano Augusto
Cruz, Adriano Gomes da
Cavalheiro, Carlos Pasqualin
dc.contributor.author.fl_str_mv Raddatz, Greice Carine
dc.subject.por.fl_str_mv Microencapsulação
Lactobacillus casei
Allium cepa L.
Compostos bioativos
Microencapsulation
Bioactive compounds
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS
topic Microencapsulação
Lactobacillus casei
Allium cepa L.
Compostos bioativos
Microencapsulation
Bioactive compounds
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS
description The development of products containing one or more bioactive compounds has become an attractive way to the consumer as a way to establish a better quality of life. Among the bioactive compounds, probiotics and antioxidant compounds stand out, however, their application in food matrices becomes limited as they are extremely sensitive to adverse conditions. Therefore, new alternatives to introduce these compounds to the consumer's daily life are needed. Microencapsulation is a promising, safe and effective technology for the delivery of several bioactive compounds. Among the various microencapsulation techniques, there is the external ionic gelation. The objective of this work was to develop alginate microparticles containing the probiotic Lactobacillus casei LC03 in combination with red onion (Allium cepa L.) peel extract at different concentrations (5, 20 and 40%), using the external ionic gelation technique (Article II), for later application in a food matrix (Article III). Article II evaluated the viability of probiotics under simulated gastrointestinal conditions, during storage at -18, 7 and 25 °C for 90 days and resistance of microparticles to heat treatment (72 °C / 15 sec and 63 °C / 30 min). In addition to the morphology, average diameter and encapsulation efficiency of microparticles. Finally, in Article III, microparticles were added to strawberry pulp, where microbiological and physicochemical analyzes of the pulp, gastrointestinal viability and shelf life of the probiotics in the product were performed, as well as size, morphology and encapsulation efficiency of the microparticles. The microparticles varied in size from 149.29 t to 167.05 μm in Article II and from 136.00 to 305.00 μm in Article III. The encapsulation efficiency of probiotics and compounds present in the extract was satisfactory in both manuscripts. The microparticles were able to protect the probiotics against heat treatment at different temperatures (Article II). In Article II, the microparticles of the treatment containing alginate + 20% extract showed better survival of the probiotic under simulated gastrointestinal conditions, as the different microparticles were applied to the strawberry pulp, the formulations with alginate and alginate + 5% extract demonstrated more satisfactory results (Article III). As for the shelf life of probiotics during storage, in Article II, when evaluating temperatures of 25, 7 and -18 °C, all microparticle formulations remained viable until the end of the experiment (90 days) at -18 °C C, which justifies the choice of frozen strawberry pulp for the application of microparticles. When applied to the pulp (Article III), the treatments containing alginate and alginate + 5% extract reached the longest period of viability (60 days). Thus, the microparticles developed in this study are viable for the development of a new functional and vegan matrix, allowing to increase the diversification of products that contain probiotics.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-29T20:06:33Z
2022-06-29T20:06:33Z
2022-02-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/25126
dc.identifier.dark.fl_str_mv ark:/26339/0013000005drj
url http://repositorio.ufsm.br/handle/1/25126
identifier_str_mv ark:/26339/0013000005drj
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência e Tecnologia dos Alimentos
UFSM
Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência e Tecnologia dos Alimentos
UFSM
Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1821325783197548544