Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio

Detalhes bibliográficos
Autor(a) principal: Neu, Ismael Mario Marcio
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000zzw3
Texto Completo: http://repositorio.ufsm.br/handle/1/20744
Resumo: The aim of this work was to determine the sample size (number of plants) necessary to estimate the indicators of the degree of multicollinearity - condition number (NC), determinant of correlation matrix (DET) and variance inflation factor (FIV) - in matrices of correlation coefficients between rye characters, and verify the variability of sample size between indicators. The experiments were conducted in Santa Maria, Rio Grande do Sul, in five sowing seasons for the cultivar BRS Progresso and three sowing for the cultivar Temprano, totaling eight uniformity trials. In each uniformity trials, 100 plants were randomly collected and eight morphological and seven productive characters were evaluated. Cases of study were formed by the combination of characters, being 22 with the morphological characters and 21 with the productive ones. For each case, 197 sample sizes were planned and, within these, averages of 2,000 resamples were obtained, with replacement, of the degree of multicollinearity considering the three indicators (NC, DET and FIV). Based on the 197 averages, were fitted modified maximum curvature method (MMCM), segmented linear model with plateau response (MLRP), and segmented quadratic model with plateau response (MQRP). The parameters of the models were obtained and, based on these, the sample size was determined, multicollinearity degree corresponding the sample size and the adjusted coefficient of determination (R²) for each model. The MMCM provided the lowest R² values and the MLRP and MQRP models presented the best fit and are suitable for determining the sample size to evaluate the degree of multicollinearity in morphological and productive rye characters. The MQRP was the model that presented the highest R² values and, therefore, based on this model, the inferences were conducted to determine the sample size. Variability in sample size was verified to diagnose the degree of multicollinearity in morphological and productive rye characters. For both characters, larger sample sizes are required for the DET indicator, as for this indicator, greater variability was observed in the estimation in the master sample. In morphological characters, it is necessary to evaluate sample size not less than 116 plants for NC, 180 for DET and 85 for FIV. As for productive characters, the sample size for the NC and FIV indicators does not differ by the t-test for paired samples with a probability of 5% error, with a sample not less than 99 plants, and 169 plants for the DET indicator. In general, there is variability in the sample size between the indicators and between the morphological and productive characters, and there is a need for larger sample sizes in morphological characters to detect the degree of multicollinearity by the use of NC and DET and smaller size when FIV is used.
id UFSM_6c567504345d87f58d6d092a50b55957
oai_identifier_str oai:repositorio.ufsm.br:1/20744
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeioSample size for evaluating multicolinearity in characters of rye cultivarsSecale cereale LCereal de invernoReamostragemDiagnosis of multicollinearityResamplingCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThe aim of this work was to determine the sample size (number of plants) necessary to estimate the indicators of the degree of multicollinearity - condition number (NC), determinant of correlation matrix (DET) and variance inflation factor (FIV) - in matrices of correlation coefficients between rye characters, and verify the variability of sample size between indicators. The experiments were conducted in Santa Maria, Rio Grande do Sul, in five sowing seasons for the cultivar BRS Progresso and three sowing for the cultivar Temprano, totaling eight uniformity trials. In each uniformity trials, 100 plants were randomly collected and eight morphological and seven productive characters were evaluated. Cases of study were formed by the combination of characters, being 22 with the morphological characters and 21 with the productive ones. For each case, 197 sample sizes were planned and, within these, averages of 2,000 resamples were obtained, with replacement, of the degree of multicollinearity considering the three indicators (NC, DET and FIV). Based on the 197 averages, were fitted modified maximum curvature method (MMCM), segmented linear model with plateau response (MLRP), and segmented quadratic model with plateau response (MQRP). The parameters of the models were obtained and, based on these, the sample size was determined, multicollinearity degree corresponding the sample size and the adjusted coefficient of determination (R²) for each model. The MMCM provided the lowest R² values and the MLRP and MQRP models presented the best fit and are suitable for determining the sample size to evaluate the degree of multicollinearity in morphological and productive rye characters. The MQRP was the model that presented the highest R² values and, therefore, based on this model, the inferences were conducted to determine the sample size. Variability in sample size was verified to diagnose the degree of multicollinearity in morphological and productive rye characters. For both characters, larger sample sizes are required for the DET indicator, as for this indicator, greater variability was observed in the estimation in the master sample. In morphological characters, it is necessary to evaluate sample size not less than 116 plants for NC, 180 for DET and 85 for FIV. As for productive characters, the sample size for the NC and FIV indicators does not differ by the t-test for paired samples with a probability of 5% error, with a sample not less than 99 plants, and 169 plants for the DET indicator. In general, there is variability in the sample size between the indicators and between the morphological and productive characters, and there is a need for larger sample sizes in morphological characters to detect the degree of multicollinearity by the use of NC and DET and smaller size when FIV is used.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO objetivo deste trabalho foi determinar o tamanho de amostra (número de plantas) necessário para a estimação dos indicadores do grau de multicolinearidade - número de condição (NC), determinante da matriz de correlação (DET) e fator de inflação da variância (FIV) - em matrizes de coeficientes de correlação entre caracteres de cultivares de centeio, e verificar a variabilidade do tamanho de amostra entre indicadores. Os experimentos foram conduzidos em Santa Maria, Rio Grande do Sul, em cinco épocas de semeadura para a cultivar BRS Progresso e três épocas de semeadura para a cultivar Temprano, totalizando oito ensaios de uniformidade. Em cada ensaio de uniformidade, foram coletadas, aleatoriamente, 100 plantas e avaliados oito caracteres morfológicos e sete caracteres produtivos. Foram formados casos de estudo pela combinação de caracteres, sendo 22 com os caracteres morfológicos e 21 com os produtivos. Para cada caso, foram planejados 197 tamanhos de amostra e, dentro destes, foram obtidas as estimativas de médias de 2.000 reamostragens, com reposição, do grau de multicolinearidade considerando os três indicadores (NC, DET e FIV). Após, para cada caso, com base nas 197 estimativas de médias, foram ajustados o método da máxima curvatura modificado (MMCM), modelo linear segmentado com resposta platô (MLRP) e modelo quadrático segmentado com resposta platô (MQRP). Foram obtidas as estimativas dos parâmetros dos modelos e com bases nestes, foi determinado o tamanho de amostra, grau de multicolinearidade correspondente ao tamanho de amostra e o coeficiente de determinação ajustado (R²) para cada modelo. O MMCM proporcionou os menores valores de R² e os modelos MLRP e MQRP apresentaram os melhores ajustes e são adequados para determinar o tamanho de amostra para avaliar o grau de multicolinearidade em caracteres morfológicos e produtivos de centeio. O MQRP foi o modelo que apresentou os maiores valores de R² e, portanto, com base neste modelo foram realizadas as inferências para determinar o tamanho de amostra. Foi constatado variabilidade no tamanho de amostra para diagnosticar o grau de multicolinearidade em caracteres morfológicos e produtivos de centeio. Para ambos os grupos de caracteres, maiores tamanhos de amostra são necessários para o indicador DET, fato este que pode estar relacionado com a maior variabilidade no grau de multicolinearidade observada na amostra mestre. Em caracteres morfológicos, é necessário avaliar no mínimo de 116 plantas para NC, 180 para DET e 85 para FIV. Já para caracteres produtivos, o tamanho de amostra para os indicadores NC e FIV não diferem pelo teste t para amostras pareadas com probabilidade de 5% de erro, com o tamanho de amostra não menor que 99 plantas, e 169 plantas para o indicador DET. De maneira geral, há variabilidade no tamanho de amostra entre os indicadores e entre os caracteres morfológicos e produtivos, havendo a necessidade de maiores tamanhos de amostra em caracteres morfológicos para detectar o grau de multicolinearidade pela utilização de NC e DET e menor tamanho quando o FIV for utilizado.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em AgronomiaCentro de Ciências RuraisCargnelutti Filho, Albertohttp://lattes.cnpq.br/0233728865094243Toebe, MarcosStorck, LindolfoNeu, Ismael Mario Marcio2021-04-30T17:08:02Z2021-04-30T17:08:02Z2019-02-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/20744ark:/26339/001300000zzw3porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-05-01T06:00:30Zoai:repositorio.ufsm.br:1/20744Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-05-01T06:00:30Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
Sample size for evaluating multicolinearity in characters of rye cultivars
title Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
spellingShingle Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
Neu, Ismael Mario Marcio
Secale cereale L
Cereal de inverno
Reamostragem
Diagnosis of multicollinearity
Resampling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
title_full Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
title_fullStr Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
title_full_unstemmed Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
title_sort Tamanho de amostra para avaliar a multicolinearidade em caracteres de cultivares de centeio
author Neu, Ismael Mario Marcio
author_facet Neu, Ismael Mario Marcio
author_role author
dc.contributor.none.fl_str_mv Cargnelutti Filho, Alberto
http://lattes.cnpq.br/0233728865094243
Toebe, Marcos
Storck, Lindolfo
dc.contributor.author.fl_str_mv Neu, Ismael Mario Marcio
dc.subject.por.fl_str_mv Secale cereale L
Cereal de inverno
Reamostragem
Diagnosis of multicollinearity
Resampling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic Secale cereale L
Cereal de inverno
Reamostragem
Diagnosis of multicollinearity
Resampling
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description The aim of this work was to determine the sample size (number of plants) necessary to estimate the indicators of the degree of multicollinearity - condition number (NC), determinant of correlation matrix (DET) and variance inflation factor (FIV) - in matrices of correlation coefficients between rye characters, and verify the variability of sample size between indicators. The experiments were conducted in Santa Maria, Rio Grande do Sul, in five sowing seasons for the cultivar BRS Progresso and three sowing for the cultivar Temprano, totaling eight uniformity trials. In each uniformity trials, 100 plants were randomly collected and eight morphological and seven productive characters were evaluated. Cases of study were formed by the combination of characters, being 22 with the morphological characters and 21 with the productive ones. For each case, 197 sample sizes were planned and, within these, averages of 2,000 resamples were obtained, with replacement, of the degree of multicollinearity considering the three indicators (NC, DET and FIV). Based on the 197 averages, were fitted modified maximum curvature method (MMCM), segmented linear model with plateau response (MLRP), and segmented quadratic model with plateau response (MQRP). The parameters of the models were obtained and, based on these, the sample size was determined, multicollinearity degree corresponding the sample size and the adjusted coefficient of determination (R²) for each model. The MMCM provided the lowest R² values and the MLRP and MQRP models presented the best fit and are suitable for determining the sample size to evaluate the degree of multicollinearity in morphological and productive rye characters. The MQRP was the model that presented the highest R² values and, therefore, based on this model, the inferences were conducted to determine the sample size. Variability in sample size was verified to diagnose the degree of multicollinearity in morphological and productive rye characters. For both characters, larger sample sizes are required for the DET indicator, as for this indicator, greater variability was observed in the estimation in the master sample. In morphological characters, it is necessary to evaluate sample size not less than 116 plants for NC, 180 for DET and 85 for FIV. As for productive characters, the sample size for the NC and FIV indicators does not differ by the t-test for paired samples with a probability of 5% error, with a sample not less than 99 plants, and 169 plants for the DET indicator. In general, there is variability in the sample size between the indicators and between the morphological and productive characters, and there is a need for larger sample sizes in morphological characters to detect the degree of multicollinearity by the use of NC and DET and smaller size when FIV is used.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-21
2021-04-30T17:08:02Z
2021-04-30T17:08:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/20744
dc.identifier.dark.fl_str_mv ark:/26339/001300000zzw3
url http://repositorio.ufsm.br/handle/1/20744
identifier_str_mv ark:/26339/001300000zzw3
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Agronomia
UFSM
Programa de Pós-Graduação em Agronomia
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172421419794432