Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo

Detalhes bibliográficos
Autor(a) principal: Pott, Luan Pierre
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000005szq
Texto Completo: http://repositorio.ufsm.br/handle/1/19101
Resumo: According the concept of precision agriculture and new technologies for agriculture, there were several studies to improve tools at an extremely important stage in crop management, which is the identification and control of weeds. Therefore, the spatial variability of weed distribution is not being considered in deciding their management in most cases. In this sense, the objective of this study was: (i) the use of a hyperspectral sensor to identify more efficient spectral bands in distinguishing weeds from other targets (sandy soil, clay soil and plant residues) in pre-planting; (ii) elaborate vegetation indices to evaluate the accuracy of weed distinction and other targets. Two databases were used, the first from a field experiment conducted at the Federal University of Santa Maria as training data, and the second database was built with readings on-farm as validation data. The HandHeld 2 spectrometer, ASD®, with wavelengths of 325-1075nm, was used to perform spectral curves readings of weed species and other targets: clay soil, sandy soil, and residues. Subsequently, the wavelengths were grouped into spectral bands, as well as the calculation of vegetation indices for data analysis. The results showed that the data collected in the field experiment (training data) and in the farms (validation data) obtained similar spectral curves, where the red and near infrared spectral bands obtained higher accuracy compared to the other bands. The vegetation indices used increased the discrimination accuracy in relation to the isolated spectral bands. The work provides a valid tool for distinguishing weeds from other targets using proximal sensor pre-sowing of crops based on spectral curves.
id UFSM_7734293f8ad48f2d453ec8e84698aaa8
oai_identifier_str oai:repositorio.ufsm.br:1/19101
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campoPre-planting weed detection based on ground field spectral dataManejo sítio-específico de plantas daninhasCurvas espectraisBandas espectraisÍndices de vegetaçãoSite-specific weed management (SSWM)Spectral curvesSpectral bandsVegetation indicesCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAAccording the concept of precision agriculture and new technologies for agriculture, there were several studies to improve tools at an extremely important stage in crop management, which is the identification and control of weeds. Therefore, the spatial variability of weed distribution is not being considered in deciding their management in most cases. In this sense, the objective of this study was: (i) the use of a hyperspectral sensor to identify more efficient spectral bands in distinguishing weeds from other targets (sandy soil, clay soil and plant residues) in pre-planting; (ii) elaborate vegetation indices to evaluate the accuracy of weed distinction and other targets. Two databases were used, the first from a field experiment conducted at the Federal University of Santa Maria as training data, and the second database was built with readings on-farm as validation data. The HandHeld 2 spectrometer, ASD®, with wavelengths of 325-1075nm, was used to perform spectral curves readings of weed species and other targets: clay soil, sandy soil, and residues. Subsequently, the wavelengths were grouped into spectral bands, as well as the calculation of vegetation indices for data analysis. The results showed that the data collected in the field experiment (training data) and in the farms (validation data) obtained similar spectral curves, where the red and near infrared spectral bands obtained higher accuracy compared to the other bands. The vegetation indices used increased the discrimination accuracy in relation to the isolated spectral bands. The work provides a valid tool for distinguishing weeds from other targets using proximal sensor pre-sowing of crops based on spectral curves.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESVisto o conceito de agricultura de precisão e as novas tecnologias para a agricultura, tem-se a busca do aprimoramento de ferramentas de uma etapa de extrema importância no manejo de culturas agrícolas, que é a identificação e controle de plantas daninhas. Para tanto, a variabilidade espacial da distribuição das plantas daninhas não está sendo consideradas na decisão de seus manejos na maioria dos casos. Neste sentido, objetivou-se com este trabalho: (i) a utilização de sensor hiperespectral para identificar bandas espectrais mais eficazes na distinção de plantas daninhas em relação à outros alvos (solo arenoso, solo argiloso e resíduos vegetais) em pré-semeadura; (ii) calcular índices de vegetação para avaliação da acurácia da distinção de plantas daninhas e outros alvos. Foram utilizados dois bancos de dados, o primeiro provindo de experimento de campo realizado na Universidade Federal de Santa Maria para calibração do modelo, e o segundo banco de dados foi construído com leituras em fazenda de produtores rurais, para validação do modelo. Foi utilizado o espectrorradiômetro HandHeld 2, ASD®, com comprimentos de onda de 325-1075nm, para realizar leituras das curvas espectrais de espécies de plantas daninhas e outros alvos: solo argiloso, solo arenoso, e resíduos vegetais. Posteriormente foram agrupados os comprimentos de onda em bandas espectrais, bem como cálculo de índices de vegetação para análise dos dados. Os resultados demonstraram que os dados coletados no experimento de campo (calibração) e nas fazendas (validação) obtiveram curvas espectrais similares, onde as bandas espectrais do vermelho e do infravermelho próximo obtiveram maior acurácia comparado com as outras bandas. Os índices de vegetação utilizados aumentaram a acurácia da discriminação em relação à bandas espectrais isoladas. O trabalho fornece uma válida ferramenta para distinção de plantas daninhas de outros alvos com a utilização de sensor proximal em pré-semeadura de culturas agrícolas baseado em curvas espectrais.Universidade Federal de Santa MariaBrasilEngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCentro de Ciências RuraisAmado, Telmo Jorge Carneirohttp://lattes.cnpq.br/8591926237097756Ciampitti, Ignacio Antoniohttps://orcid.org/0000-0001-9619-5129Bianchi, Mario Antoniohttp://lattes.cnpq.br/5740080659495057Pott, Luan Pierre2019-12-04T21:57:08Z2019-12-04T21:57:08Z2019-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19101ark:/26339/0013000005szqporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-09-27T18:00:08Zoai:repositorio.ufsm.br:1/19101Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-09-27T18:00:08Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
Pre-planting weed detection based on ground field spectral data
title Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
spellingShingle Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
Pott, Luan Pierre
Manejo sítio-específico de plantas daninhas
Curvas espectrais
Bandas espectrais
Índices de vegetação
Site-specific weed management (SSWM)
Spectral curves
Spectral bands
Vegetation indices
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
title_full Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
title_fullStr Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
title_full_unstemmed Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
title_sort Detecção de plantas daninhas em pré-semeadura com base em dados espectrais de campo
author Pott, Luan Pierre
author_facet Pott, Luan Pierre
author_role author
dc.contributor.none.fl_str_mv Amado, Telmo Jorge Carneiro
http://lattes.cnpq.br/8591926237097756
Ciampitti, Ignacio Antonio
https://orcid.org/0000-0001-9619-5129
Bianchi, Mario Antonio
http://lattes.cnpq.br/5740080659495057
dc.contributor.author.fl_str_mv Pott, Luan Pierre
dc.subject.por.fl_str_mv Manejo sítio-específico de plantas daninhas
Curvas espectrais
Bandas espectrais
Índices de vegetação
Site-specific weed management (SSWM)
Spectral curves
Spectral bands
Vegetation indices
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
topic Manejo sítio-específico de plantas daninhas
Curvas espectrais
Bandas espectrais
Índices de vegetação
Site-specific weed management (SSWM)
Spectral curves
Spectral bands
Vegetation indices
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description According the concept of precision agriculture and new technologies for agriculture, there were several studies to improve tools at an extremely important stage in crop management, which is the identification and control of weeds. Therefore, the spatial variability of weed distribution is not being considered in deciding their management in most cases. In this sense, the objective of this study was: (i) the use of a hyperspectral sensor to identify more efficient spectral bands in distinguishing weeds from other targets (sandy soil, clay soil and plant residues) in pre-planting; (ii) elaborate vegetation indices to evaluate the accuracy of weed distinction and other targets. Two databases were used, the first from a field experiment conducted at the Federal University of Santa Maria as training data, and the second database was built with readings on-farm as validation data. The HandHeld 2 spectrometer, ASD®, with wavelengths of 325-1075nm, was used to perform spectral curves readings of weed species and other targets: clay soil, sandy soil, and residues. Subsequently, the wavelengths were grouped into spectral bands, as well as the calculation of vegetation indices for data analysis. The results showed that the data collected in the field experiment (training data) and in the farms (validation data) obtained similar spectral curves, where the red and near infrared spectral bands obtained higher accuracy compared to the other bands. The vegetation indices used increased the discrimination accuracy in relation to the isolated spectral bands. The work provides a valid tool for distinguishing weeds from other targets using proximal sensor pre-sowing of crops based on spectral curves.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-04T21:57:08Z
2019-12-04T21:57:08Z
2019-08-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/19101
dc.identifier.dark.fl_str_mv ark:/26339/0013000005szq
url http://repositorio.ufsm.br/handle/1/19101
identifier_str_mv ark:/26339/0013000005szq
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1821325789552967680