Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)

Detalhes bibliográficos
Autor(a) principal: Sampaio, Marco Ivan Rodrigues
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000005s9x
Texto Completo: http://repositorio.ufsm.br/handle/1/19731
Resumo: Nowadays, there is a necessity for the use of tools in order to estimate yield potential during the development of corn crop. Thus, the aid of active optical sensors, or embedded in RPAS, in the generation of vegetation indices can provide significant information to the knowledge of the behavior and temporal relationship of these indices with yield parameters of agricultural crops. Normally, during the monitoring of the entire cycle of a crop, a large amount of data is generated, which is difficult to analyze and interpret because the relationships between variables are complex. The goal of this work was to use multivariate analysis techniques to better understand the relationship of corn yield under different nitrogen rates, using vegetation indices obtained from data from two distinct remote sensing platforms, one proximal and the other, the remotely piloted aircraft (RPA) at different phenological stages. The experiment was carried out by Carvalho (2019) in a crop area of the Federal University of Santa Maria with the corn cultivar. A randomized block design with five blocks and five treatments with nitrogen dose variations (N) after the culture emergence was used. Vegetation sensing was performed by two distinct platforms, sequoia sensor embedded in an RPA and Optrx sensor embedded in a bicycle, obtaining the NDVI, GNDVI, EVI2 and NDRE Vegetation Indices with the sequoia sensor embedded in the RPA, and NDVI and NDRE with the sequoia sensor embedded in the bicycle in the vegetative stages V5, V7, V9, V11 and V12. In addition to these variables, the number of plants, N levels in the plant, and yield data were obtained. In this work we used data from four blocks, containing 800 plots, but only data from 451 plots were used, due to the discarding of 349 plots, which did not vary from 14 to 18 plants at harvest and/or did not present readings for some variable, i.e., null value. The normality test was performed and the data did not present normality, the data was standardized in the software (Statistica 12). Data analysis was performed using multivariate statistics using Hierarchical Cluster Analysis (HCA), Factor Analysis (FA) and Principal Component Analysis (PCA) methods. It was concluded that two distinct groups were formed (Sequoia / ARP and Optrx), and there was a greater relationship between productivity data with IVs (NDRE, NDVI, GNDVI and EVI2) at phenological stage V9 and IV NDRE at phenological stage V12.
id UFSM_7d253c8b6f0a69086a0aac3c122f517a
oai_identifier_str oai:repositorio.ufsm.br:1/19731
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)The use of multivariate statistics in the analysis of maize crop vegetation indices (Zea mays L.)ACPNDREClusterPCACNPQ::CIENCIAS AGRARIAS::AGRONOMIANowadays, there is a necessity for the use of tools in order to estimate yield potential during the development of corn crop. Thus, the aid of active optical sensors, or embedded in RPAS, in the generation of vegetation indices can provide significant information to the knowledge of the behavior and temporal relationship of these indices with yield parameters of agricultural crops. Normally, during the monitoring of the entire cycle of a crop, a large amount of data is generated, which is difficult to analyze and interpret because the relationships between variables are complex. The goal of this work was to use multivariate analysis techniques to better understand the relationship of corn yield under different nitrogen rates, using vegetation indices obtained from data from two distinct remote sensing platforms, one proximal and the other, the remotely piloted aircraft (RPA) at different phenological stages. The experiment was carried out by Carvalho (2019) in a crop area of the Federal University of Santa Maria with the corn cultivar. A randomized block design with five blocks and five treatments with nitrogen dose variations (N) after the culture emergence was used. Vegetation sensing was performed by two distinct platforms, sequoia sensor embedded in an RPA and Optrx sensor embedded in a bicycle, obtaining the NDVI, GNDVI, EVI2 and NDRE Vegetation Indices with the sequoia sensor embedded in the RPA, and NDVI and NDRE with the sequoia sensor embedded in the bicycle in the vegetative stages V5, V7, V9, V11 and V12. In addition to these variables, the number of plants, N levels in the plant, and yield data were obtained. In this work we used data from four blocks, containing 800 plots, but only data from 451 plots were used, due to the discarding of 349 plots, which did not vary from 14 to 18 plants at harvest and/or did not present readings for some variable, i.e., null value. The normality test was performed and the data did not present normality, the data was standardized in the software (Statistica 12). Data analysis was performed using multivariate statistics using Hierarchical Cluster Analysis (HCA), Factor Analysis (FA) and Principal Component Analysis (PCA) methods. It was concluded that two distinct groups were formed (Sequoia / ARP and Optrx), and there was a greater relationship between productivity data with IVs (NDRE, NDVI, GNDVI and EVI2) at phenological stage V9 and IV NDRE at phenological stage V12.Há necessidade do uso de ferramentas para estimativa do potencial produtivo durante o desenvolvimento da cultura do milho. Assim, o auxílio por meio de sensores ópticos ativos ou embarcado em ARPs para a geração de índices de vegetação, pode fornecer informações significativas para o conhecimento do comportamento e relação temporal destes índices com parâmetros produtivos das culturas agrícolas. Normalmente, no monitoramento do ciclo inteiro de uma lavoura, são gerados uma grande quantidade de dados que são difíceis de analisar e interpretar, pois as relações entre as variáveis são complexas. O Objetivo do trabalho foi utilizar técnicas de análise multivariada para melhor entender a relação da produtividade do milho, sob diferentes doses de nitrogênio, com uso de índices de vegetação obtidos a partir de dados de duas plataformas distintas de sensoriamento remoto, uma proximal e a outra a aeronave remotamente pilotada (ARP), em diferentes estágios fenológicos. O experimento foi realizado por Carvalho (2019) em uma área de lavoura da Universidade Federal de Santa Maria com a cultivar de milho. O delineamento utilizado foi blocos ao acaso com cinco blocos e 5 tratamentos com variações de doses de nitrogênio (N) após a emergência da cultura. O sensoriamento da vegetação foi realizado por duas plataformas distintas sensor sequoia embarcado em ARP e o sensor Optrx embarcada em uma bicicleta, obtendo-se os Índices de Vegetação (IVs) NDVI, GNDVI, EVI2 e NDRE com o sensor sequoia embarcada no ARP e NDVI e NDRE com o sensor sequoia embarcada na bicicleta nos estádios vegetativos V5, V7, V9, V11 e V12. Além dessas variáveis foram obtidos número de plantas, teores de N na planta e dados de produtividade. Nesse trabalho foram utilizados dados de quatro blocos, contendo 800 parcelas, porém foram utilizados somente dados de 451 parcelas, em função do descarte de 349 parcelas, que não apresentavam a variação de 14 a 18 plantas no momento da colheita e/ou não apresentavam leituras para alguma variável, ou seja, valor nulo. Foi realizado o teste de normalidade e os dados não apresentaram normalidade, foi realizado a padronização dos dados no software (Statistica 12). A análise dos dados foi realizada com a estatística multivariada com os métodos de Análise de Agrupamentos Hierárquicos (AAH), Analise Fatorial (AF) e Análise de Componentes Principais (ACP). Conclui-se que foi formado dois grupos distintos (Sequoia/ARP e Optrx), existindo um relação maior entre dados de produtividade com os IVs (NDRE, NDVI, GNDVI e EVI2) no estádio fenológico V9 e o IV NDRE no estádio fenológico V12.Universidade Federal de Santa MariaBrasilTecnologia em Agricultura de PrecisãoUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoColégio Politécnico da UFSMAmaral, Lúcio de Paulahttp://lattes.cnpq.br/6612592358172016Amado, Telmo Jorge Carneirohttp://lattes.cnpq.br/8591926237097756Zamberlan, João Fernandohttp://lattes.cnpq.br/1383156245860606Sampaio, Marco Ivan Rodrigues2020-03-04T21:08:45Z2020-03-04T21:08:45Z2019-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19731ark:/26339/0013000005s9xporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-29T14:16:14Zoai:repositorio.ufsm.br:1/19731Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-29T14:16:14Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
The use of multivariate statistics in the analysis of maize crop vegetation indices (Zea mays L.)
title Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
spellingShingle Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
Sampaio, Marco Ivan Rodrigues
ACP
NDRE
Cluster
PCA
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
title_short Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
title_full Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
title_fullStr Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
title_full_unstemmed Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
title_sort Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
author Sampaio, Marco Ivan Rodrigues
author_facet Sampaio, Marco Ivan Rodrigues
author_role author
dc.contributor.none.fl_str_mv Amaral, Lúcio de Paula
http://lattes.cnpq.br/6612592358172016
Amado, Telmo Jorge Carneiro
http://lattes.cnpq.br/8591926237097756
Zamberlan, João Fernando
http://lattes.cnpq.br/1383156245860606
dc.contributor.author.fl_str_mv Sampaio, Marco Ivan Rodrigues
dc.subject.por.fl_str_mv ACP
NDRE
Cluster
PCA
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
topic ACP
NDRE
Cluster
PCA
CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
description Nowadays, there is a necessity for the use of tools in order to estimate yield potential during the development of corn crop. Thus, the aid of active optical sensors, or embedded in RPAS, in the generation of vegetation indices can provide significant information to the knowledge of the behavior and temporal relationship of these indices with yield parameters of agricultural crops. Normally, during the monitoring of the entire cycle of a crop, a large amount of data is generated, which is difficult to analyze and interpret because the relationships between variables are complex. The goal of this work was to use multivariate analysis techniques to better understand the relationship of corn yield under different nitrogen rates, using vegetation indices obtained from data from two distinct remote sensing platforms, one proximal and the other, the remotely piloted aircraft (RPA) at different phenological stages. The experiment was carried out by Carvalho (2019) in a crop area of the Federal University of Santa Maria with the corn cultivar. A randomized block design with five blocks and five treatments with nitrogen dose variations (N) after the culture emergence was used. Vegetation sensing was performed by two distinct platforms, sequoia sensor embedded in an RPA and Optrx sensor embedded in a bicycle, obtaining the NDVI, GNDVI, EVI2 and NDRE Vegetation Indices with the sequoia sensor embedded in the RPA, and NDVI and NDRE with the sequoia sensor embedded in the bicycle in the vegetative stages V5, V7, V9, V11 and V12. In addition to these variables, the number of plants, N levels in the plant, and yield data were obtained. In this work we used data from four blocks, containing 800 plots, but only data from 451 plots were used, due to the discarding of 349 plots, which did not vary from 14 to 18 plants at harvest and/or did not present readings for some variable, i.e., null value. The normality test was performed and the data did not present normality, the data was standardized in the software (Statistica 12). Data analysis was performed using multivariate statistics using Hierarchical Cluster Analysis (HCA), Factor Analysis (FA) and Principal Component Analysis (PCA) methods. It was concluded that two distinct groups were formed (Sequoia / ARP and Optrx), and there was a greater relationship between productivity data with IVs (NDRE, NDVI, GNDVI and EVI2) at phenological stage V9 and IV NDRE at phenological stage V12.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-30
2020-03-04T21:08:45Z
2020-03-04T21:08:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/19731
dc.identifier.dark.fl_str_mv ark:/26339/0013000005s9x
url http://repositorio.ufsm.br/handle/1/19731
identifier_str_mv ark:/26339/0013000005s9x
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Tecnologia em Agricultura de Precisão
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Tecnologia em Agricultura de Precisão
UFSM
Programa de Pós-Graduação em Agricultura de Precisão
Colégio Politécnico da UFSM
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172289181777920