Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000005s9x |
Texto Completo: | http://repositorio.ufsm.br/handle/1/19731 |
Resumo: | Nowadays, there is a necessity for the use of tools in order to estimate yield potential during the development of corn crop. Thus, the aid of active optical sensors, or embedded in RPAS, in the generation of vegetation indices can provide significant information to the knowledge of the behavior and temporal relationship of these indices with yield parameters of agricultural crops. Normally, during the monitoring of the entire cycle of a crop, a large amount of data is generated, which is difficult to analyze and interpret because the relationships between variables are complex. The goal of this work was to use multivariate analysis techniques to better understand the relationship of corn yield under different nitrogen rates, using vegetation indices obtained from data from two distinct remote sensing platforms, one proximal and the other, the remotely piloted aircraft (RPA) at different phenological stages. The experiment was carried out by Carvalho (2019) in a crop area of the Federal University of Santa Maria with the corn cultivar. A randomized block design with five blocks and five treatments with nitrogen dose variations (N) after the culture emergence was used. Vegetation sensing was performed by two distinct platforms, sequoia sensor embedded in an RPA and Optrx sensor embedded in a bicycle, obtaining the NDVI, GNDVI, EVI2 and NDRE Vegetation Indices with the sequoia sensor embedded in the RPA, and NDVI and NDRE with the sequoia sensor embedded in the bicycle in the vegetative stages V5, V7, V9, V11 and V12. In addition to these variables, the number of plants, N levels in the plant, and yield data were obtained. In this work we used data from four blocks, containing 800 plots, but only data from 451 plots were used, due to the discarding of 349 plots, which did not vary from 14 to 18 plants at harvest and/or did not present readings for some variable, i.e., null value. The normality test was performed and the data did not present normality, the data was standardized in the software (Statistica 12). Data analysis was performed using multivariate statistics using Hierarchical Cluster Analysis (HCA), Factor Analysis (FA) and Principal Component Analysis (PCA) methods. It was concluded that two distinct groups were formed (Sequoia / ARP and Optrx), and there was a greater relationship between productivity data with IVs (NDRE, NDVI, GNDVI and EVI2) at phenological stage V9 and IV NDRE at phenological stage V12. |
id |
UFSM_7d253c8b6f0a69086a0aac3c122f517a |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/19731 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.)The use of multivariate statistics in the analysis of maize crop vegetation indices (Zea mays L.)ACPNDREClusterPCACNPQ::CIENCIAS AGRARIAS::AGRONOMIANowadays, there is a necessity for the use of tools in order to estimate yield potential during the development of corn crop. Thus, the aid of active optical sensors, or embedded in RPAS, in the generation of vegetation indices can provide significant information to the knowledge of the behavior and temporal relationship of these indices with yield parameters of agricultural crops. Normally, during the monitoring of the entire cycle of a crop, a large amount of data is generated, which is difficult to analyze and interpret because the relationships between variables are complex. The goal of this work was to use multivariate analysis techniques to better understand the relationship of corn yield under different nitrogen rates, using vegetation indices obtained from data from two distinct remote sensing platforms, one proximal and the other, the remotely piloted aircraft (RPA) at different phenological stages. The experiment was carried out by Carvalho (2019) in a crop area of the Federal University of Santa Maria with the corn cultivar. A randomized block design with five blocks and five treatments with nitrogen dose variations (N) after the culture emergence was used. Vegetation sensing was performed by two distinct platforms, sequoia sensor embedded in an RPA and Optrx sensor embedded in a bicycle, obtaining the NDVI, GNDVI, EVI2 and NDRE Vegetation Indices with the sequoia sensor embedded in the RPA, and NDVI and NDRE with the sequoia sensor embedded in the bicycle in the vegetative stages V5, V7, V9, V11 and V12. In addition to these variables, the number of plants, N levels in the plant, and yield data were obtained. In this work we used data from four blocks, containing 800 plots, but only data from 451 plots were used, due to the discarding of 349 plots, which did not vary from 14 to 18 plants at harvest and/or did not present readings for some variable, i.e., null value. The normality test was performed and the data did not present normality, the data was standardized in the software (Statistica 12). Data analysis was performed using multivariate statistics using Hierarchical Cluster Analysis (HCA), Factor Analysis (FA) and Principal Component Analysis (PCA) methods. It was concluded that two distinct groups were formed (Sequoia / ARP and Optrx), and there was a greater relationship between productivity data with IVs (NDRE, NDVI, GNDVI and EVI2) at phenological stage V9 and IV NDRE at phenological stage V12.Há necessidade do uso de ferramentas para estimativa do potencial produtivo durante o desenvolvimento da cultura do milho. Assim, o auxílio por meio de sensores ópticos ativos ou embarcado em ARPs para a geração de índices de vegetação, pode fornecer informações significativas para o conhecimento do comportamento e relação temporal destes índices com parâmetros produtivos das culturas agrícolas. Normalmente, no monitoramento do ciclo inteiro de uma lavoura, são gerados uma grande quantidade de dados que são difíceis de analisar e interpretar, pois as relações entre as variáveis são complexas. O Objetivo do trabalho foi utilizar técnicas de análise multivariada para melhor entender a relação da produtividade do milho, sob diferentes doses de nitrogênio, com uso de índices de vegetação obtidos a partir de dados de duas plataformas distintas de sensoriamento remoto, uma proximal e a outra a aeronave remotamente pilotada (ARP), em diferentes estágios fenológicos. O experimento foi realizado por Carvalho (2019) em uma área de lavoura da Universidade Federal de Santa Maria com a cultivar de milho. O delineamento utilizado foi blocos ao acaso com cinco blocos e 5 tratamentos com variações de doses de nitrogênio (N) após a emergência da cultura. O sensoriamento da vegetação foi realizado por duas plataformas distintas sensor sequoia embarcado em ARP e o sensor Optrx embarcada em uma bicicleta, obtendo-se os Índices de Vegetação (IVs) NDVI, GNDVI, EVI2 e NDRE com o sensor sequoia embarcada no ARP e NDVI e NDRE com o sensor sequoia embarcada na bicicleta nos estádios vegetativos V5, V7, V9, V11 e V12. Além dessas variáveis foram obtidos número de plantas, teores de N na planta e dados de produtividade. Nesse trabalho foram utilizados dados de quatro blocos, contendo 800 parcelas, porém foram utilizados somente dados de 451 parcelas, em função do descarte de 349 parcelas, que não apresentavam a variação de 14 a 18 plantas no momento da colheita e/ou não apresentavam leituras para alguma variável, ou seja, valor nulo. Foi realizado o teste de normalidade e os dados não apresentaram normalidade, foi realizado a padronização dos dados no software (Statistica 12). A análise dos dados foi realizada com a estatística multivariada com os métodos de Análise de Agrupamentos Hierárquicos (AAH), Analise Fatorial (AF) e Análise de Componentes Principais (ACP). Conclui-se que foi formado dois grupos distintos (Sequoia/ARP e Optrx), existindo um relação maior entre dados de produtividade com os IVs (NDRE, NDVI, GNDVI e EVI2) no estádio fenológico V9 e o IV NDRE no estádio fenológico V12.Universidade Federal de Santa MariaBrasilTecnologia em Agricultura de PrecisãoUFSMPrograma de Pós-Graduação em Agricultura de PrecisãoColégio Politécnico da UFSMAmaral, Lúcio de Paulahttp://lattes.cnpq.br/6612592358172016Amado, Telmo Jorge Carneirohttp://lattes.cnpq.br/8591926237097756Zamberlan, João Fernandohttp://lattes.cnpq.br/1383156245860606Sampaio, Marco Ivan Rodrigues2020-03-04T21:08:45Z2020-03-04T21:08:45Z2019-08-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19731ark:/26339/0013000005s9xporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-29T14:16:14Zoai:repositorio.ufsm.br:1/19731Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-29T14:16:14Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) The use of multivariate statistics in the analysis of maize crop vegetation indices (Zea mays L.) |
title |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) |
spellingShingle |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) Sampaio, Marco Ivan Rodrigues ACP NDRE Cluster PCA CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) |
title_full |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) |
title_fullStr |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) |
title_full_unstemmed |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) |
title_sort |
Uso da estatística multivariada para a análise de índices de vegetação para a cultura do milho (Zea mays L.) |
author |
Sampaio, Marco Ivan Rodrigues |
author_facet |
Sampaio, Marco Ivan Rodrigues |
author_role |
author |
dc.contributor.none.fl_str_mv |
Amaral, Lúcio de Paula http://lattes.cnpq.br/6612592358172016 Amado, Telmo Jorge Carneiro http://lattes.cnpq.br/8591926237097756 Zamberlan, João Fernando http://lattes.cnpq.br/1383156245860606 |
dc.contributor.author.fl_str_mv |
Sampaio, Marco Ivan Rodrigues |
dc.subject.por.fl_str_mv |
ACP NDRE Cluster PCA CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
ACP NDRE Cluster PCA CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Nowadays, there is a necessity for the use of tools in order to estimate yield potential during the development of corn crop. Thus, the aid of active optical sensors, or embedded in RPAS, in the generation of vegetation indices can provide significant information to the knowledge of the behavior and temporal relationship of these indices with yield parameters of agricultural crops. Normally, during the monitoring of the entire cycle of a crop, a large amount of data is generated, which is difficult to analyze and interpret because the relationships between variables are complex. The goal of this work was to use multivariate analysis techniques to better understand the relationship of corn yield under different nitrogen rates, using vegetation indices obtained from data from two distinct remote sensing platforms, one proximal and the other, the remotely piloted aircraft (RPA) at different phenological stages. The experiment was carried out by Carvalho (2019) in a crop area of the Federal University of Santa Maria with the corn cultivar. A randomized block design with five blocks and five treatments with nitrogen dose variations (N) after the culture emergence was used. Vegetation sensing was performed by two distinct platforms, sequoia sensor embedded in an RPA and Optrx sensor embedded in a bicycle, obtaining the NDVI, GNDVI, EVI2 and NDRE Vegetation Indices with the sequoia sensor embedded in the RPA, and NDVI and NDRE with the sequoia sensor embedded in the bicycle in the vegetative stages V5, V7, V9, V11 and V12. In addition to these variables, the number of plants, N levels in the plant, and yield data were obtained. In this work we used data from four blocks, containing 800 plots, but only data from 451 plots were used, due to the discarding of 349 plots, which did not vary from 14 to 18 plants at harvest and/or did not present readings for some variable, i.e., null value. The normality test was performed and the data did not present normality, the data was standardized in the software (Statistica 12). Data analysis was performed using multivariate statistics using Hierarchical Cluster Analysis (HCA), Factor Analysis (FA) and Principal Component Analysis (PCA) methods. It was concluded that two distinct groups were formed (Sequoia / ARP and Optrx), and there was a greater relationship between productivity data with IVs (NDRE, NDVI, GNDVI and EVI2) at phenological stage V9 and IV NDRE at phenological stage V12. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-30 2020-03-04T21:08:45Z 2020-03-04T21:08:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/19731 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000005s9x |
url |
http://repositorio.ufsm.br/handle/1/19731 |
identifier_str_mv |
ark:/26339/0013000005s9x |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Tecnologia em Agricultura de Precisão UFSM Programa de Pós-Graduação em Agricultura de Precisão Colégio Politécnico da UFSM |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Tecnologia em Agricultura de Precisão UFSM Programa de Pós-Graduação em Agricultura de Precisão Colégio Politécnico da UFSM |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172289181777920 |