Uso de bibliotecas espectrais para a predição do carbono orgânico do solo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000gtw1 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/16306 |
Resumo: | This study demonstrates the use of diffuse reflectance spectroscopy (DRS) applied to soil organic carbon (SOC) prediction. The scope of the study is related to the increase in the demand for soil information to support environmental monitoring, agricultural production and to feed models for simulation of future scenarios. DRS associated to soil spectral libraries (SSL) is an alternative for quantification of SOC content. However, the predictive ability of the models is linked to the characteristics of soil spectral data. Therefore, it becomes essential to evaluate the construction of models when the SSL is composed by samples with high variability in physical, chemical and morphological characteristics, which is the case for soils in the south of Brazil. Considering that the accuracy of the models is defined by the complexity and coverage of pedological features of soils represented in the SSL, associated to techniques of spectral processing and multivariate methods, the objectives of this study were: i) evaluate the effect of preprocessing techniques, multivariate methods and sample stratification of SSL on the accuracy of the models; ii) identify the influence of the spectral complexity of the samples on the quality of predictions; iii) define the minimum features of the SSL that might impact their predictive ability. In STUDY 1, a local SSL composed of 841 samples was used. With this SSL, the influence of preprocessing techniques, multivariate methods and SSL stratification based on spectral variance, soil class, land use and soil sample depth on SOC prediction was assessed. In STUDY 2, a regional-scale SSL composed of 2,599 samples was used. With this SSL, the effect of stratification of the SSL based on regional environmental features, soil texture, land use and spectral class on the accuracy of models was evaluated. Soil spectra presented high spectral variation, due to the pedological and environmental variation of the southern region of Brazil. More accurate models were obtained with the Savitzky-Golay spectral processing technique - 1st derivative associated with the partial least squares regression calibration method, and with the Cubist method with continuous removal processing. The stratification of the SSL based on soil and environmental (physiographic regions) characteristics showed that grouping more homogeneous samples, especially in relation to physiographic regions and land uses, increased the accuracy of the predictions. The reduced number of samples due to stratification negatively affected the performance of the models, especially for groups with high pedological and spectral variation. SOC predictions presented lower accuracy for samples with coarse texture (sand > 15 % and clay < 35 %). The results confirm that the use of SSL for SOC prediction requires a previous study on the data variance. |
id |
UFSM_85407b370f199019de13029988f1b2e3 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/16306 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Uso de bibliotecas espectrais para a predição do carbono orgânico do soloUse of spectral libraries for soil organic carbon predictionSensoriamento remoto hiperespectralPredição de carbono orgânicoProcessamento espectralModelos de aprendizadoEstratificação de dados espectraisHyperspectral remote sensingPrediction of organic carbonSpectral processingLearning modelStratification of spectral datasetCNPQ::CIENCIAS AGRARIAS::AGRONOMIAThis study demonstrates the use of diffuse reflectance spectroscopy (DRS) applied to soil organic carbon (SOC) prediction. The scope of the study is related to the increase in the demand for soil information to support environmental monitoring, agricultural production and to feed models for simulation of future scenarios. DRS associated to soil spectral libraries (SSL) is an alternative for quantification of SOC content. However, the predictive ability of the models is linked to the characteristics of soil spectral data. Therefore, it becomes essential to evaluate the construction of models when the SSL is composed by samples with high variability in physical, chemical and morphological characteristics, which is the case for soils in the south of Brazil. Considering that the accuracy of the models is defined by the complexity and coverage of pedological features of soils represented in the SSL, associated to techniques of spectral processing and multivariate methods, the objectives of this study were: i) evaluate the effect of preprocessing techniques, multivariate methods and sample stratification of SSL on the accuracy of the models; ii) identify the influence of the spectral complexity of the samples on the quality of predictions; iii) define the minimum features of the SSL that might impact their predictive ability. In STUDY 1, a local SSL composed of 841 samples was used. With this SSL, the influence of preprocessing techniques, multivariate methods and SSL stratification based on spectral variance, soil class, land use and soil sample depth on SOC prediction was assessed. In STUDY 2, a regional-scale SSL composed of 2,599 samples was used. With this SSL, the effect of stratification of the SSL based on regional environmental features, soil texture, land use and spectral class on the accuracy of models was evaluated. Soil spectra presented high spectral variation, due to the pedological and environmental variation of the southern region of Brazil. More accurate models were obtained with the Savitzky-Golay spectral processing technique - 1st derivative associated with the partial least squares regression calibration method, and with the Cubist method with continuous removal processing. The stratification of the SSL based on soil and environmental (physiographic regions) characteristics showed that grouping more homogeneous samples, especially in relation to physiographic regions and land uses, increased the accuracy of the predictions. The reduced number of samples due to stratification negatively affected the performance of the models, especially for groups with high pedological and spectral variation. SOC predictions presented lower accuracy for samples with coarse texture (sand > 15 % and clay < 35 %). The results confirm that the use of SSL for SOC prediction requires a previous study on the data variance.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqEste estudo apresenta o uso da técnica de espectroscopia de reflectância difusa (ERD) aplicada à predição de carbono orgânico do solo (COS). O escopo do trabalho tem relação com o aumento da demanda por informações de solo para auxiliar no monitoramento ambiental, produção agrícola e abastecer modelos de simulação de cenários futuros. A ERD associada a bibliotecas espectrais de solo (BES) é uma alternativa para a quantificação do conteúdo de COS. No entanto, a capacidade preditiva dos modelos está atrelada às características dos dados espectrais do solo. Assim, torna-se essencial avaliar a construção de modelos quando a BES é composta por amostras com grande variação nas características físicas, químicas e mineralógicas, como é o caso dos solos da região sul do Brasil. Pois a acurácia dos modelos é definida pela complexidade e abrangência das características pedológicas dos solos representados na BES. Assim, usando uma BES da região sul do Brasil, os objetivos deste estudo foram: i) avaliar o efeito de técnicas de pré-processamentos, métodos multivariados e estratificação amostral de BES na acurácia dos modelos; ii) identificar a influência da complexidade espectral das amostras na qualidade das predições; iii) definir as características mínimas da BES que possam impactar em seu poder preditivo. No ESTUDO 1, foi utilizada uma BES de escala local, composta por 841 amostras. A partir dela testou-se a influência de técnicas de pré-processamentos, métodos multivariados e estratificação da BES com base na variância espectral, classe de solo, uso da terra e profundidade das amostras de solo na predição de COS. No ESTUDO 2, foi utilizada uma BES de escala regional, composta por 2599 amostras. A partir dela, foi avaliado o efeito da estratificação da BES com base em características ambientais regionais, classe textural do solo, usos da terra e classes espectrais na acurácia dos modelos. Os espectros de solo apresentaram alta variação espectral, decorrente da variação pedológica e ambiental da região sul do Brasil. Modelos mais acurados foram alcançados com a técnica de processamento espectral Savitzky-Golay - 1ª derivada associada ao método calibração de regressão por mínimos quadrados parciais e com o método Cubist com processamento remoção do contínuo. A estratificação de BES com base em características do solo e do ambiente (regiões fisiográficas) revelou que o agrupamento de amostras mais homogêneas, principalmente em relação a regiões fisiográficas e usos da terra aumentou a acurácia das predições. A redução no número de amostras devido à estratificação afetou negativamente o desempenho dos modelos, principalmente para grupos com alta variação pedológica e espectral. As predições de COS apresentaram menor acurácia para amostras com textura grossa (areia > 15% e argila < 35%). Os resultados reiteram que o uso de BES para a predição de COS exige um estudo prévio sobre a variância dos dados.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Ciência do SoloCentro de Ciências RuraisDalmolin, Ricardo Simão Dinizhttp://lattes.cnpq.br/3735884911693854Pedron, Fabrício de Araújohttp://lattes.cnpq.br/6868334304493274Vasques, Gustavo de Mattoshttp://lattes.cnpq.br/1838153897546051Miguel, Pablohttp://lattes.cnpq.br/4145554276881172Schenato, Ricardo Bergamohttp://lattes.cnpq.br/4043277579467500Bueno, Jean Michel Moura2019-04-25T11:45:48Z2019-04-25T11:45:48Z2018-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/16306ark:/26339/001300000gtw1porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-04-26T06:02:05Zoai:repositorio.ufsm.br:1/16306Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-04-26T06:02:05Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo Use of spectral libraries for soil organic carbon prediction |
title |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo |
spellingShingle |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo Bueno, Jean Michel Moura Sensoriamento remoto hiperespectral Predição de carbono orgânico Processamento espectral Modelos de aprendizado Estratificação de dados espectrais Hyperspectral remote sensing Prediction of organic carbon Spectral processing Learning model Stratification of spectral dataset CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo |
title_full |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo |
title_fullStr |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo |
title_full_unstemmed |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo |
title_sort |
Uso de bibliotecas espectrais para a predição do carbono orgânico do solo |
author |
Bueno, Jean Michel Moura |
author_facet |
Bueno, Jean Michel Moura |
author_role |
author |
dc.contributor.none.fl_str_mv |
Dalmolin, Ricardo Simão Diniz http://lattes.cnpq.br/3735884911693854 Pedron, Fabrício de Araújo http://lattes.cnpq.br/6868334304493274 Vasques, Gustavo de Mattos http://lattes.cnpq.br/1838153897546051 Miguel, Pablo http://lattes.cnpq.br/4145554276881172 Schenato, Ricardo Bergamo http://lattes.cnpq.br/4043277579467500 |
dc.contributor.author.fl_str_mv |
Bueno, Jean Michel Moura |
dc.subject.por.fl_str_mv |
Sensoriamento remoto hiperespectral Predição de carbono orgânico Processamento espectral Modelos de aprendizado Estratificação de dados espectrais Hyperspectral remote sensing Prediction of organic carbon Spectral processing Learning model Stratification of spectral dataset CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Sensoriamento remoto hiperespectral Predição de carbono orgânico Processamento espectral Modelos de aprendizado Estratificação de dados espectrais Hyperspectral remote sensing Prediction of organic carbon Spectral processing Learning model Stratification of spectral dataset CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
This study demonstrates the use of diffuse reflectance spectroscopy (DRS) applied to soil organic carbon (SOC) prediction. The scope of the study is related to the increase in the demand for soil information to support environmental monitoring, agricultural production and to feed models for simulation of future scenarios. DRS associated to soil spectral libraries (SSL) is an alternative for quantification of SOC content. However, the predictive ability of the models is linked to the characteristics of soil spectral data. Therefore, it becomes essential to evaluate the construction of models when the SSL is composed by samples with high variability in physical, chemical and morphological characteristics, which is the case for soils in the south of Brazil. Considering that the accuracy of the models is defined by the complexity and coverage of pedological features of soils represented in the SSL, associated to techniques of spectral processing and multivariate methods, the objectives of this study were: i) evaluate the effect of preprocessing techniques, multivariate methods and sample stratification of SSL on the accuracy of the models; ii) identify the influence of the spectral complexity of the samples on the quality of predictions; iii) define the minimum features of the SSL that might impact their predictive ability. In STUDY 1, a local SSL composed of 841 samples was used. With this SSL, the influence of preprocessing techniques, multivariate methods and SSL stratification based on spectral variance, soil class, land use and soil sample depth on SOC prediction was assessed. In STUDY 2, a regional-scale SSL composed of 2,599 samples was used. With this SSL, the effect of stratification of the SSL based on regional environmental features, soil texture, land use and spectral class on the accuracy of models was evaluated. Soil spectra presented high spectral variation, due to the pedological and environmental variation of the southern region of Brazil. More accurate models were obtained with the Savitzky-Golay spectral processing technique - 1st derivative associated with the partial least squares regression calibration method, and with the Cubist method with continuous removal processing. The stratification of the SSL based on soil and environmental (physiographic regions) characteristics showed that grouping more homogeneous samples, especially in relation to physiographic regions and land uses, increased the accuracy of the predictions. The reduced number of samples due to stratification negatively affected the performance of the models, especially for groups with high pedological and spectral variation. SOC predictions presented lower accuracy for samples with coarse texture (sand > 15 % and clay < 35 %). The results confirm that the use of SSL for SOC prediction requires a previous study on the data variance. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05-21 2019-04-25T11:45:48Z 2019-04-25T11:45:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/16306 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000gtw1 |
url |
http://repositorio.ufsm.br/handle/1/16306 |
identifier_str_mv |
ark:/26339/001300000gtw1 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Ciência do Solo Centro de Ciências Rurais |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Ciência do Solo Centro de Ciências Rurais |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172341150253056 |