Microencapsulação de probióticos por multicamadas para aplicação em alimentos

Detalhes bibliográficos
Autor(a) principal: Menezes, Maria Fernanda da Silveira Cáceres de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/23055
Resumo: The aim of this study was to evaluate the effects of microencapsulation promoted on the viability of free and microencapsulated Lactobacillus acidophilus by ionic gelation associated with electrostatic interaction from pectin particles and whey protein concentrate sequentially adsorbed in up to 3 layers. The particle production stage by ion gelation was performed with low esterification pectin, being gelified in the presence of calcium ions, followed by coating, by electrostatic interaction, with the protein concentrate. The probiotic used in the free and microencapsulated form was Lactobacillus acidhophilus LA 02. Four types of particles were made, one particle produced only with the encapsulant matrix, pectin (2%), which was considered a control, since it did not have any coating, was identified by LA/P0; LA/P1 was formed by pectin (2%) and a WPC coating (2%); LA/P2 was formed by pectin (2%), a WPC coating (2%) and pectin overlay (0.3%) and LA/P3 was formed by pectin (2%), a WPC coating (2%), pectin overlay (0.3%) and lastly again the WPC (0.5%), characterizing them as multilayer particles and the standard, the free microorganisms. The encapsulation efficiency, size and morphology were evaluated in order to characterize the wet and freeze dried particles, as well as the viability of free and microencapsulated lactobacilli after in vitro exposure to gastrointestinal conditions, after simulation of heat treatments and during 120 days of storage at freezing (-18ºC), refrigeration (5ºC) and ambient (25ºC) temperatures. Encapsulation efficiency decreased when layers were adsorbed to both wet and freeze dried particles. Regarding the size, WPC adsorption reduced the particle size ranging from 447.6 - 208.0 μm for wet and between 575.2 - 421.1 μm for freeze drieds. The particles were slightly spherical, however, the freeze dried process promoted structure rupture with superficial pores. Exposure to different pHs that simulate passage through the gastrointestinal tract showed that LA/P1 and LA/P3 wet microparticles showed low permeability under acidic conditions and high permeability to the neutral environment of the intestine, while free microorganisms showed loss of viability. These same particles, and freeze dried LA/P2, exhibited better resistance than free probiotics in the simulated intestinal fluid. Regarding the heat treatments applied to the wet particles, it was observed that the LA/P1 resisted the exposure at 63ºC for 30 min, since it did not present significant difference (p> 0.05) in relation to the initial count (9.57 log CFU/g). When subjected to 72ºC for 15s, LA/P1 was also more resistant, with a reduction of 2.14 log CFU / g, while free culture reduced 5.4 log CFU/g. The freeze-dried particles at 72ºC for 15s showed resistance to the test, except for LA/P0 and free lactobacilli that showed loss of viability. The best viability of the wet particles was obtained at a storage temperature of -18ºC, with counts of 7.86 log CFU/g for LA/P1 at the end of the period (120 days) and 6.55 log CFU/g for the storage. LA/P3 for 105 days. The freeze-dried particles LA/ P1, LA/P2 and LA/P3 presented satisfactory resistance to 120 days with viability of around 7 log CFU/g when stored at refrigeration (5°C) and freezing (-18°C). This study showed that external ionic gelation and electrostatic interaction using WPC associated multilayer pectin proved to be an effective microencapsulation system to promote greater protection and viability of Lactobacillus acidophilus against adverse conditions.
id UFSM_8c53b641f69ecba514b9410ee13eed39
oai_identifier_str oai:repositorio.ufsm.br:1/23055
network_acronym_str UFSM
network_name_str Biblioteca Digital de Teses e Dissertações do UFSM
repository_id_str
spelling 2021-11-29T18:52:40Z2021-11-29T18:52:40Z2019-08-09http://repositorio.ufsm.br/handle/1/23055The aim of this study was to evaluate the effects of microencapsulation promoted on the viability of free and microencapsulated Lactobacillus acidophilus by ionic gelation associated with electrostatic interaction from pectin particles and whey protein concentrate sequentially adsorbed in up to 3 layers. The particle production stage by ion gelation was performed with low esterification pectin, being gelified in the presence of calcium ions, followed by coating, by electrostatic interaction, with the protein concentrate. The probiotic used in the free and microencapsulated form was Lactobacillus acidhophilus LA 02. Four types of particles were made, one particle produced only with the encapsulant matrix, pectin (2%), which was considered a control, since it did not have any coating, was identified by LA/P0; LA/P1 was formed by pectin (2%) and a WPC coating (2%); LA/P2 was formed by pectin (2%), a WPC coating (2%) and pectin overlay (0.3%) and LA/P3 was formed by pectin (2%), a WPC coating (2%), pectin overlay (0.3%) and lastly again the WPC (0.5%), characterizing them as multilayer particles and the standard, the free microorganisms. The encapsulation efficiency, size and morphology were evaluated in order to characterize the wet and freeze dried particles, as well as the viability of free and microencapsulated lactobacilli after in vitro exposure to gastrointestinal conditions, after simulation of heat treatments and during 120 days of storage at freezing (-18ºC), refrigeration (5ºC) and ambient (25ºC) temperatures. Encapsulation efficiency decreased when layers were adsorbed to both wet and freeze dried particles. Regarding the size, WPC adsorption reduced the particle size ranging from 447.6 - 208.0 μm for wet and between 575.2 - 421.1 μm for freeze drieds. The particles were slightly spherical, however, the freeze dried process promoted structure rupture with superficial pores. Exposure to different pHs that simulate passage through the gastrointestinal tract showed that LA/P1 and LA/P3 wet microparticles showed low permeability under acidic conditions and high permeability to the neutral environment of the intestine, while free microorganisms showed loss of viability. These same particles, and freeze dried LA/P2, exhibited better resistance than free probiotics in the simulated intestinal fluid. Regarding the heat treatments applied to the wet particles, it was observed that the LA/P1 resisted the exposure at 63ºC for 30 min, since it did not present significant difference (p> 0.05) in relation to the initial count (9.57 log CFU/g). When subjected to 72ºC for 15s, LA/P1 was also more resistant, with a reduction of 2.14 log CFU / g, while free culture reduced 5.4 log CFU/g. The freeze-dried particles at 72ºC for 15s showed resistance to the test, except for LA/P0 and free lactobacilli that showed loss of viability. The best viability of the wet particles was obtained at a storage temperature of -18ºC, with counts of 7.86 log CFU/g for LA/P1 at the end of the period (120 days) and 6.55 log CFU/g for the storage. LA/P3 for 105 days. The freeze-dried particles LA/ P1, LA/P2 and LA/P3 presented satisfactory resistance to 120 days with viability of around 7 log CFU/g when stored at refrigeration (5°C) and freezing (-18°C). This study showed that external ionic gelation and electrostatic interaction using WPC associated multilayer pectin proved to be an effective microencapsulation system to promote greater protection and viability of Lactobacillus acidophilus against adverse conditions.O objetivo deste estudo consistiu em avaliar os efeitos da microencapsulação promovidos na viabilidade de Lactobacillus acidophilus livres e microencapsulados por gelificação iônica associada à interação eletrostática a partir de partículas de pectina e concentrado proteico do soro de leite (WPC) adsorvidas sequencialmente em até 3 camadas. A etapa de produção de partículas por gelificação iônica foi realizada com pectina de baixo teor de esterificação, sendo gelificada na presença de íons cálcio, seguida pelo recobrimento, por interação eletrostática, com o concentrado proteico. O probiótico utilizado na forma livre e microencapsulado foi o Lactobacillus acidhophilus LA 02. Foram elaborados 4 tipos de partículas, sendo uma partícula produzida apenas com a matriz encapsulante, pectina (2%), a qual foi considerada controle, pois não apresentou nenhum recobrimento e foi identificada por LA/P0; a LA/P1 foi formada por pectina (2%) e um revestimento de WPC (2%); a LA/P2 foi formada por pectina (2%), um revestimento de WPC (2%) e sobrecamada de pectina (0,3%) e a LA/P3 foi formada por pectina (2%), um revestimento de WPC (2%), sobrecamada de pectina (0,3%) e por último, novamente o WPC (0,5%), caracterizando-as como partículas multicamadas e o padrão, os micro-organismos livres. A eficiência de encapsulação, tamanho e morfologia foram avaliados, a fim de caracterizar as partículas úmidas e liofilizadas, bem como foram avaliados a viabilidade dos lactobacilos livres e microencapsulados, após a exposição in vitro às condições gastrointestinais, após a simulação de tratamentos térmicos e durante 120 dias de armazenamento às temperaturas de congelamento (-18ºC), refrigeração (5ºC) e ambiente (25ºC). A eficiência de encapsulação reduziu quando camadas foram adsorvidas, tanto para as partículas úmidas quanto as liofilizadas. Em relação ao tamanho, a adsorção de WPC reduziu o tamanho das partículas que variaram entre 447,6 – 208,0 μm para as úmidas e, entre 575,2 – 421,1 μm para as liofilizadas. As partículas apresentaram-se ligeiramente esféricas, no entanto, o processo de liofilização promoveu rompimento da estrutura apresentando poros superficiais. A exposição aos diferentes pHs que simulam a passagem pelo trato gastrointestinal mostrou que as micropartículas úmidas LA/P1 e LA/P3 apresentaram baixa permeabilidade em condições ácidas e alta permeabilidade ao ambiente neutro do intestino, enquanto que os micro-organismos livres apresentaram perda de viabilidade. Estas mesmas partículas, e ainda, a LA/P2 liofilizadas, exibiram melhor resistência que os probióticos livres no fluido intestinal simulado. Em relação, aos tratamentos térmicos aplicados às partículas úmidas, observou-se que a LA/P1 resistiu à exposição à 63ºC por 30 min, pois não apresentou diferença significativa (p > 0,05) em relação a contagem inicial (9,57 log UFC/g). Quando submetidas a 72ºC por 15 s, também a LA/P1 foi mais resistente, com redução de 2,14 log UFC/g, enquanto que a cultura livre reduziu 5,4 log UFC/g. As partículas liofilizadas frente à 72 ºC por 15 s apresentaram resistência ao teste, exceto a LA/P0 e os lactobacilos livres que apresentaram perda de viabialidade. As melhores viabilidades das partículas úmidas foram obtidas na estocagem sob temperatura de -18ºC, com contagens de 7,86 log UFC/g para a LA/P1 ao final do período (120 dias) e 6,55 log UFC/gpara a LA/P3 por 105 dias. Já, as partículas liofilizadas, LA/P1, LA/P2 e LA/P3 apresentaram resistência satisfatória ao período de 120 diascom viabilidade em torno de 7 log UFC/g quando estocadas às temperaturas de refrigeração (5°C) e congelamento (-18°C). Este estudo mostrou que a gelificação iônica externa e interação eletrostática utilizando pectina associada a WPC em multicamadas demonstrou-se um sistema eficaz de microencapsulação para promover maior proteção e viabilidade a Lactobacillus acidophilus frente a condições adversas.porUniversidade Federal de Santa MariaCentro de Ciências RuraisPrograma de Pós-Graduação em Ciência e Tecnologia dos AlimentosUFSMBrasilCiência e Tecnologia dos AlimentosAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMulticamadasPectinaConcentrado proteico do soroProbióticosMultilayerPectinWhey protein concentrateProbioticsCNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOSMicroencapsulação de probióticos por multicamadas para aplicação em alimentosMicroencapsulation of multi-layer probiotics for food applicationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMenezes, Cristiano Ragagnin dehttp://lattes.cnpq.br/1755735245826251Guarienti, CíntiaNunes, Graciele LorenzoniBallus, Cristiano AugustoRosa, Claudia Severo dahttp://lattes.cnpq.br/2492852061553220Menezes, Maria Fernanda da Silveira Cáceres de500700000006600258af7af-3798-4558-a517-832162d04b318f022971-4f16-4ada-ae35-2d5c2fc068074e95e9c8-5fe4-40db-a302-cce1afe2d6ad91658cc8-05cf-4ae0-ab9a-008280868e3eaa47d54c-3a6b-402e-b4d9-7e65e2298b4b0b751825-42ac-4d3d-aca5-52d7fb8ea246reponame:Biblioteca Digital de Teses e Dissertações do UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALTES_PPGCTA_2019_MENEZES_MARIA.pdfTES_PPGCTA_2019_MENEZES_MARIA.pdfTese de doutoradoapplication/pdf10896348http://repositorio.ufsm.br/bitstream/1/23055/1/TES_PPGCTA_2019_MENEZES_MARIA.pdf71bc34a9734bb5e315bd42881650d57fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/23055/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/23055/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTTES_PPGCTA_2019_MENEZES_MARIA.pdf.txtTES_PPGCTA_2019_MENEZES_MARIA.pdf.txtExtracted texttext/plain142836http://repositorio.ufsm.br/bitstream/1/23055/4/TES_PPGCTA_2019_MENEZES_MARIA.pdf.txteb7c64456de9d7df8c9670f38ae879d5MD54THUMBNAILTES_PPGCTA_2019_MENEZES_MARIA.pdf.jpgTES_PPGCTA_2019_MENEZES_MARIA.pdf.jpgIM Thumbnailimage/jpeg4478http://repositorio.ufsm.br/bitstream/1/23055/5/TES_PPGCTA_2019_MENEZES_MARIA.pdf.jpgf42e9b5b8e1a4723e3e162f10c6ecbb1MD551/230552021-11-30 03:03:37.517oai:repositorio.ufsm.br:1/23055TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKBiblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-11-30T06:03:37Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Microencapsulação de probióticos por multicamadas para aplicação em alimentos
dc.title.alternative.eng.fl_str_mv Microencapsulation of multi-layer probiotics for food application
title Microencapsulação de probióticos por multicamadas para aplicação em alimentos
spellingShingle Microencapsulação de probióticos por multicamadas para aplicação em alimentos
Menezes, Maria Fernanda da Silveira Cáceres de
Multicamadas
Pectina
Concentrado proteico do soro
Probióticos
Multilayer
Pectin
Whey protein concentrate
Probiotics
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS
title_short Microencapsulação de probióticos por multicamadas para aplicação em alimentos
title_full Microencapsulação de probióticos por multicamadas para aplicação em alimentos
title_fullStr Microencapsulação de probióticos por multicamadas para aplicação em alimentos
title_full_unstemmed Microencapsulação de probióticos por multicamadas para aplicação em alimentos
title_sort Microencapsulação de probióticos por multicamadas para aplicação em alimentos
author Menezes, Maria Fernanda da Silveira Cáceres de
author_facet Menezes, Maria Fernanda da Silveira Cáceres de
author_role author
dc.contributor.advisor1.fl_str_mv Menezes, Cristiano Ragagnin de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1755735245826251
dc.contributor.referee1.fl_str_mv Guarienti, Cíntia
dc.contributor.referee2.fl_str_mv Nunes, Graciele Lorenzoni
dc.contributor.referee3.fl_str_mv Ballus, Cristiano Augusto
dc.contributor.referee4.fl_str_mv Rosa, Claudia Severo da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2492852061553220
dc.contributor.author.fl_str_mv Menezes, Maria Fernanda da Silveira Cáceres de
contributor_str_mv Menezes, Cristiano Ragagnin de
Guarienti, Cíntia
Nunes, Graciele Lorenzoni
Ballus, Cristiano Augusto
Rosa, Claudia Severo da
dc.subject.por.fl_str_mv Multicamadas
Pectina
Concentrado proteico do soro
Probióticos
topic Multicamadas
Pectina
Concentrado proteico do soro
Probióticos
Multilayer
Pectin
Whey protein concentrate
Probiotics
CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS
dc.subject.eng.fl_str_mv Multilayer
Pectin
Whey protein concentrate
Probiotics
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::CIENCIA E TECNOLOGIA DE ALIMENTOS
description The aim of this study was to evaluate the effects of microencapsulation promoted on the viability of free and microencapsulated Lactobacillus acidophilus by ionic gelation associated with electrostatic interaction from pectin particles and whey protein concentrate sequentially adsorbed in up to 3 layers. The particle production stage by ion gelation was performed with low esterification pectin, being gelified in the presence of calcium ions, followed by coating, by electrostatic interaction, with the protein concentrate. The probiotic used in the free and microencapsulated form was Lactobacillus acidhophilus LA 02. Four types of particles were made, one particle produced only with the encapsulant matrix, pectin (2%), which was considered a control, since it did not have any coating, was identified by LA/P0; LA/P1 was formed by pectin (2%) and a WPC coating (2%); LA/P2 was formed by pectin (2%), a WPC coating (2%) and pectin overlay (0.3%) and LA/P3 was formed by pectin (2%), a WPC coating (2%), pectin overlay (0.3%) and lastly again the WPC (0.5%), characterizing them as multilayer particles and the standard, the free microorganisms. The encapsulation efficiency, size and morphology were evaluated in order to characterize the wet and freeze dried particles, as well as the viability of free and microencapsulated lactobacilli after in vitro exposure to gastrointestinal conditions, after simulation of heat treatments and during 120 days of storage at freezing (-18ºC), refrigeration (5ºC) and ambient (25ºC) temperatures. Encapsulation efficiency decreased when layers were adsorbed to both wet and freeze dried particles. Regarding the size, WPC adsorption reduced the particle size ranging from 447.6 - 208.0 μm for wet and between 575.2 - 421.1 μm for freeze drieds. The particles were slightly spherical, however, the freeze dried process promoted structure rupture with superficial pores. Exposure to different pHs that simulate passage through the gastrointestinal tract showed that LA/P1 and LA/P3 wet microparticles showed low permeability under acidic conditions and high permeability to the neutral environment of the intestine, while free microorganisms showed loss of viability. These same particles, and freeze dried LA/P2, exhibited better resistance than free probiotics in the simulated intestinal fluid. Regarding the heat treatments applied to the wet particles, it was observed that the LA/P1 resisted the exposure at 63ºC for 30 min, since it did not present significant difference (p> 0.05) in relation to the initial count (9.57 log CFU/g). When subjected to 72ºC for 15s, LA/P1 was also more resistant, with a reduction of 2.14 log CFU / g, while free culture reduced 5.4 log CFU/g. The freeze-dried particles at 72ºC for 15s showed resistance to the test, except for LA/P0 and free lactobacilli that showed loss of viability. The best viability of the wet particles was obtained at a storage temperature of -18ºC, with counts of 7.86 log CFU/g for LA/P1 at the end of the period (120 days) and 6.55 log CFU/g for the storage. LA/P3 for 105 days. The freeze-dried particles LA/ P1, LA/P2 and LA/P3 presented satisfactory resistance to 120 days with viability of around 7 log CFU/g when stored at refrigeration (5°C) and freezing (-18°C). This study showed that external ionic gelation and electrostatic interaction using WPC associated multilayer pectin proved to be an effective microencapsulation system to promote greater protection and viability of Lactobacillus acidophilus against adverse conditions.
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-09
dc.date.accessioned.fl_str_mv 2021-11-29T18:52:40Z
dc.date.available.fl_str_mv 2021-11-29T18:52:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23055
url http://repositorio.ufsm.br/handle/1/23055
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 500700000006
dc.relation.confidence.fl_str_mv 600
dc.relation.authority.fl_str_mv 258af7af-3798-4558-a517-832162d04b31
8f022971-4f16-4ada-ae35-2d5c2fc06807
4e95e9c8-5fe4-40db-a302-cce1afe2d6ad
91658cc8-05cf-4ae0-ab9a-008280868e3e
aa47d54c-3a6b-402e-b4d9-7e65e2298b4b
0b751825-42ac-4d3d-aca5-52d7fb8ea246
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Ciência e Tecnologia dos Alimentos
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Biblioteca Digital de Teses e Dissertações do UFSM
collection Biblioteca Digital de Teses e Dissertações do UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/23055/1/TES_PPGCTA_2019_MENEZES_MARIA.pdf
http://repositorio.ufsm.br/bitstream/1/23055/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/23055/3/license.txt
http://repositorio.ufsm.br/bitstream/1/23055/4/TES_PPGCTA_2019_MENEZES_MARIA.pdf.txt
http://repositorio.ufsm.br/bitstream/1/23055/5/TES_PPGCTA_2019_MENEZES_MARIA.pdf.jpg
bitstream.checksum.fl_str_mv 71bc34a9734bb5e315bd42881650d57f
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
eb7c64456de9d7df8c9670f38ae879d5
f42e9b5b8e1a4723e3e162f10c6ecbb1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1801485230822916096