Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000xx5x |
Texto Completo: | http://repositorio.ufsm.br/handle/1/22941 |
Resumo: | Sunflower (Helianthus annuus L.) originates from the American continent and produces excellent quality oil. Modeling is an important tool to characterize growth and development, as it allows simulating the real behavior of plants. Therefore, this study aimed to apply nonlinear models to describe the growth and development of three sunflower cultivars; verify the importance of meeting the assumptions in the quality of the adjustment; use parameter estimates for practical applications and comparisons of cultivar growth and development patterns; and, define the coordinates of the critical points of the models that present the best fit. The data used come from nine uniformity trials with sunflower cultivars Aguará 6, Nusol 4510 and Rhino, in three sowing times, conducted in the experimental area of the Federal University of Santa Maria in Frederico Westphalen – RS/Brazil in the 2019/2020 crop year and resulted in three studies. Plant height (PH), fresh plant mass (FPM) and number of leaves (NL) data were adjusted as a function of the accumulated thermal sum (ATs) of 10 plants randomly collected in the uniformity test, using logistic models ( L), Gompertz (G), Brody (B) and von Bertalanffy (VB). The parameters were estimated using the method of ordinary least squares (MQO) or generalized least squares (MQG). In the presence of violations, the power method was used to structure the variance. Parameter estimates were compared by overlapping confidence intervals (CI95%) and the goodness of fit of the models to the data was measured by the adjusted coefficient of determination (R2adj), Akaike's information criterion (AIC), Bayesian information criterion (BIC), and through intrinsic (IN) and parametric (PE) nonlinearity. Statistical analyzes were performed using Microsoft Office Excel® and R software. In the first study with the cultivar Rhino, the results showed that models L and G satisfactorily describe the growth curve in PH. Model L has the best fit, being the most adequate to characterize the growth curve. The estimated critical points provide important information for managing the crop. The second study shows that the insertion of the power structure into the models results in a better fit of L and G to the FPM data. Cultivars Aguará 6 and Nusol 4510 are better described by model L, and showed the highest growth phase in the first season. Cultivar Rhino is best described by the Gompertz model and shows a reduction in the growth phase in the first season. In the third study, model L was the most suitable for describing the NL development of cultivars Aguará 6 and Rhino while G is more suitable for Nusol 4510. Model B should not be used to describe the NL development of sunflower cultivars. Critical points allow to differentiate cultivars according to the development pattern. Aguará 6 and Rhino reach the inflection point (IP) at 50% of the asymptote, while Nusol 4510 reaches the IP at 37% of the asymptote. |
id |
UFSM_94f5cf5b731d8cf638585f2e9e9d629d |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/22941 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassolNonlinear models for description of growth and development of sunflower cultivarsCurva de crescimentoHelianthus annuus L.HeterocedasticidadeRegressão não linearGrowth curveHeteroscedasticityNonlinear regressionCNPQ::CIENCIAS AGRARIAS::AGRONOMIASunflower (Helianthus annuus L.) originates from the American continent and produces excellent quality oil. Modeling is an important tool to characterize growth and development, as it allows simulating the real behavior of plants. Therefore, this study aimed to apply nonlinear models to describe the growth and development of three sunflower cultivars; verify the importance of meeting the assumptions in the quality of the adjustment; use parameter estimates for practical applications and comparisons of cultivar growth and development patterns; and, define the coordinates of the critical points of the models that present the best fit. The data used come from nine uniformity trials with sunflower cultivars Aguará 6, Nusol 4510 and Rhino, in three sowing times, conducted in the experimental area of the Federal University of Santa Maria in Frederico Westphalen – RS/Brazil in the 2019/2020 crop year and resulted in three studies. Plant height (PH), fresh plant mass (FPM) and number of leaves (NL) data were adjusted as a function of the accumulated thermal sum (ATs) of 10 plants randomly collected in the uniformity test, using logistic models ( L), Gompertz (G), Brody (B) and von Bertalanffy (VB). The parameters were estimated using the method of ordinary least squares (MQO) or generalized least squares (MQG). In the presence of violations, the power method was used to structure the variance. Parameter estimates were compared by overlapping confidence intervals (CI95%) and the goodness of fit of the models to the data was measured by the adjusted coefficient of determination (R2adj), Akaike's information criterion (AIC), Bayesian information criterion (BIC), and through intrinsic (IN) and parametric (PE) nonlinearity. Statistical analyzes were performed using Microsoft Office Excel® and R software. In the first study with the cultivar Rhino, the results showed that models L and G satisfactorily describe the growth curve in PH. Model L has the best fit, being the most adequate to characterize the growth curve. The estimated critical points provide important information for managing the crop. The second study shows that the insertion of the power structure into the models results in a better fit of L and G to the FPM data. Cultivars Aguará 6 and Nusol 4510 are better described by model L, and showed the highest growth phase in the first season. Cultivar Rhino is best described by the Gompertz model and shows a reduction in the growth phase in the first season. In the third study, model L was the most suitable for describing the NL development of cultivars Aguará 6 and Rhino while G is more suitable for Nusol 4510. Model B should not be used to describe the NL development of sunflower cultivars. Critical points allow to differentiate cultivars according to the development pattern. Aguará 6 and Rhino reach the inflection point (IP) at 50% of the asymptote, while Nusol 4510 reaches the IP at 37% of the asymptote.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESO girassol (Helianthus annuus L.) é originário do continente americano e produz óleo de excelente qualidade. A modelagem é uma ferramenta importante para caracterizar o crescimento e o desenvolvimento, pois permite simular o comportamento real de plantas. Portanto, este estudo teve por objetivos aplicar modelos não lineares para a descrição do crescimento e desenvolvimento de três cultivares de girassol; verificar a importância do atendimento dos pressupostos na qualidade do ajuste; utilizar as estimativas dos parâmetros para aplicações práticas e comparações dos padrões de crescimento e desenvolvimento das cultivares; e, definir as coordenadas dos pontos críticos dos modelos que apresentarem melhor ajuste. Os dados utilizados são oriundos de nove ensaios de uniformidade com as cultivares de girassol Aguará 6, Nusol 4510 e Rhino, em três épocas de semeadura, conduzidos na área experimental da Universidade Federal de Santa Maria em Frederico Westphalen – RS/Brasil na safra 2019/2020 e resultaram em três estudos. Os dados de altura de planta (ALT), massa fresca de planta (MFP) e número de folhas (NF) foram ajustados em função da soma térmica acumulada (STa) de 10 plantas coletadas aleatoriamente no ensaio de uniformidade, usando os modelos Logístico (L), Gompertz (G), Brody (B) e von Bertalanffy (VB). Os parâmetros foram estimados por meio do método dos mínimos quadrados ordinários (MQO) ou mínimos quadrados generalizados (MQG). Na presença de violações, utilizou-se o método potência para estruturar a variância. As estimativas dos parâmetros foram comparadas por sobreposição de intervalos de confiança (IC95%) e a qualidade de ajuste dos modelos aos dados foi medida pelo coeficiente de determinação ajustado (R2adj), critério de informação de Akaike (AIC), critério bayesiano de informação (BIC), e por meio da não linearidade intrínseca (NI) e paramétrica (EP). As análises estatísticas foram realizadas com Microsoft Office Excel® e o software R. No primeiro estudo com a cultivar Rhino os resultados demostraram que os modelos L e G descrevem satisfatoriamente a curva de crescimento em ALT. O modelo L apresenta a melhor qualidade de ajuste, sendo o mais adequado para caracterizar a curva de crescimento. Os pontos críticos estimados fornecem informações importantes para o manejo da cultura. O segundo estudo mostra que a inserção da estrutura potência aos modelos resulta em melhor ajuste de L e G aos dados de MFP. As cultivares Aguará 6 e Nusol 4510 são melhor descritas pelo modelo L, e apresentaram maior fase de crescimento na primeira época. A cultivar Rhino é melhor descrita pelo modelo Gompertz e apresenta redução na fase de crescimento na primeira época. No terceiro estudo, o modelo L foi o mais adequado para descrição do desenvolvimento em NF das cultivares Aguará 6 e Rhino enquanto G é mais adequado para Nusol 4510. O modelo B não deve ser utilizado na descrição do desenvolvimento em NF de cultivares de girassol. Os pontos críticos permitem diferenciar as cultivares de acordo com o padrão de desenvolvimento. Aguará 6 e Rhino atingem o ponto de inflexão (PI) em 50% da assíntota, enquanto Nusol 4510 atinge o PI em 37% da assíntota.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em Agronomia - Agricultura e AmbienteUFSM Frederico WestphalenToebe, Marcoshttp://lattes.cnpq.br/1350890583236601Marchioro, Volmir Sergiohttp://lattes.cnpq.br/3744130894870798Cargnelutti Filho, AlbertoLoose, Luís HenriqueMello, Anderson Chuquel2021-11-23T19:42:06Z2021-11-23T19:42:06Z2021-09-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22941ark:/26339/001300000xx5xporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-11-24T06:00:35Zoai:repositorio.ufsm.br:1/22941Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-11-24T06:00:35Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol Nonlinear models for description of growth and development of sunflower cultivars |
title |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol |
spellingShingle |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol Mello, Anderson Chuquel Curva de crescimento Helianthus annuus L. Heterocedasticidade Regressão não linear Growth curve Heteroscedasticity Nonlinear regression CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol |
title_full |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol |
title_fullStr |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol |
title_full_unstemmed |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol |
title_sort |
Modelos não lineares para descrição do crescimento e desenvolvimento de cultivares de girassol |
author |
Mello, Anderson Chuquel |
author_facet |
Mello, Anderson Chuquel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Toebe, Marcos http://lattes.cnpq.br/1350890583236601 Marchioro, Volmir Sergio http://lattes.cnpq.br/3744130894870798 Cargnelutti Filho, Alberto Loose, Luís Henrique |
dc.contributor.author.fl_str_mv |
Mello, Anderson Chuquel |
dc.subject.por.fl_str_mv |
Curva de crescimento Helianthus annuus L. Heterocedasticidade Regressão não linear Growth curve Heteroscedasticity Nonlinear regression CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Curva de crescimento Helianthus annuus L. Heterocedasticidade Regressão não linear Growth curve Heteroscedasticity Nonlinear regression CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Sunflower (Helianthus annuus L.) originates from the American continent and produces excellent quality oil. Modeling is an important tool to characterize growth and development, as it allows simulating the real behavior of plants. Therefore, this study aimed to apply nonlinear models to describe the growth and development of three sunflower cultivars; verify the importance of meeting the assumptions in the quality of the adjustment; use parameter estimates for practical applications and comparisons of cultivar growth and development patterns; and, define the coordinates of the critical points of the models that present the best fit. The data used come from nine uniformity trials with sunflower cultivars Aguará 6, Nusol 4510 and Rhino, in three sowing times, conducted in the experimental area of the Federal University of Santa Maria in Frederico Westphalen – RS/Brazil in the 2019/2020 crop year and resulted in three studies. Plant height (PH), fresh plant mass (FPM) and number of leaves (NL) data were adjusted as a function of the accumulated thermal sum (ATs) of 10 plants randomly collected in the uniformity test, using logistic models ( L), Gompertz (G), Brody (B) and von Bertalanffy (VB). The parameters were estimated using the method of ordinary least squares (MQO) or generalized least squares (MQG). In the presence of violations, the power method was used to structure the variance. Parameter estimates were compared by overlapping confidence intervals (CI95%) and the goodness of fit of the models to the data was measured by the adjusted coefficient of determination (R2adj), Akaike's information criterion (AIC), Bayesian information criterion (BIC), and through intrinsic (IN) and parametric (PE) nonlinearity. Statistical analyzes were performed using Microsoft Office Excel® and R software. In the first study with the cultivar Rhino, the results showed that models L and G satisfactorily describe the growth curve in PH. Model L has the best fit, being the most adequate to characterize the growth curve. The estimated critical points provide important information for managing the crop. The second study shows that the insertion of the power structure into the models results in a better fit of L and G to the FPM data. Cultivars Aguará 6 and Nusol 4510 are better described by model L, and showed the highest growth phase in the first season. Cultivar Rhino is best described by the Gompertz model and shows a reduction in the growth phase in the first season. In the third study, model L was the most suitable for describing the NL development of cultivars Aguará 6 and Rhino while G is more suitable for Nusol 4510. Model B should not be used to describe the NL development of sunflower cultivars. Critical points allow to differentiate cultivars according to the development pattern. Aguará 6 and Rhino reach the inflection point (IP) at 50% of the asymptote, while Nusol 4510 reaches the IP at 37% of the asymptote. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-23T19:42:06Z 2021-11-23T19:42:06Z 2021-09-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/22941 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000xx5x |
url |
http://repositorio.ufsm.br/handle/1/22941 |
identifier_str_mv |
ark:/26339/001300000xx5x |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente UFSM Frederico Westphalen |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia - Agricultura e Ambiente UFSM Frederico Westphalen |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172417145798656 |