Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos

Detalhes bibliográficos
Autor(a) principal: Lovato, Émilie Scheunemann
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/23309
Resumo: Photovoltaic panels are technologies that have been gradually increasing in the world market and, after their end of life, are considered as electronic waste. There are 250,000 metric tons of solar panel waste worldwide and that number will reach 78 million by 2050. Among some of the consequences of improper disposal of photovoltaic panels, there is the percolation of heavy metals in the soil, such as lead and cadmium, and consequent impact on water resources and also losses of aluminum and glass, important for the industrial market. In addition, there are losses of metals with high added value, such as silicon and silver. The importance of recycling photovoltaic panels meets the need to restore these materials to the production process. The technology of supercritical fluids has been presented as an interesting technique for the recycling and extraction of several materials due to the high solvation power and low viscosity. It is advantageous to use this technology when the extraction object has high added value, as is the case with the photovoltaic plate. The separation of the module layers with supercritical fluids allows components to be reused in new materials. One of the major difficulties in recycling solar panels is the delamination of their constituents. Thus, this work aimed to analyze the efficiency of supercritical technology with carbon dioxide (CO2) in the delamination of photovoltaic panels through the application of different cosolvents and the use of a planetary ball mill to enable exposure and access to high-value metals to be recycled. Several samples of a Canadian Solar model cs6Pp-265p photovoltaic plate were used. Toluene was used in the delamination of the photovoltaic module with supercritical CO2 (ScCO2) and comparatively in the system at atmospheric pressure. The variables pressure, temperature, solid:liquid ratio (S:L) and time were analyzed. The recovery efficiency and purity of the materials obtained after the process were carried out. The constituents of the photovoltaic module were subjected to analyzes of SEM/EDS, XRD, XRF, TGA, DSC and FTIR. ScCO2 showed advantages in terms of solvent volume and time when compared to the system at atmospheric pressure. After 60 min in ScCO2 and in the planetary ball mill, the recovery was close to 100% for the fractions of glass, metallic filament and protection sheet. The recovery of the solar cell and EVA was over 85%, which is satisfactory and allows the recovery of silicon and silver, metals of high value for the market. In addition, this reuse reduces the extraction of raw materials, bringing economic and environmental benefits.
id UFSM_95e9ddad87676a3c559063f5be043586
oai_identifier_str oai:repositorio.ufsm.br:1/23309
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiososApplication of supercritical CO2 in the delamination of a photovoltaic panel aiming the recovery of valuable materialsPainéis fotovoltaicosCO2 supercríticoToluenoSilícioPhotovoltaic panelsSupercritical CO2TolueneSiliconCNPQ::ENGENHARIAS::ENGENHARIA QUIMICAPhotovoltaic panels are technologies that have been gradually increasing in the world market and, after their end of life, are considered as electronic waste. There are 250,000 metric tons of solar panel waste worldwide and that number will reach 78 million by 2050. Among some of the consequences of improper disposal of photovoltaic panels, there is the percolation of heavy metals in the soil, such as lead and cadmium, and consequent impact on water resources and also losses of aluminum and glass, important for the industrial market. In addition, there are losses of metals with high added value, such as silicon and silver. The importance of recycling photovoltaic panels meets the need to restore these materials to the production process. The technology of supercritical fluids has been presented as an interesting technique for the recycling and extraction of several materials due to the high solvation power and low viscosity. It is advantageous to use this technology when the extraction object has high added value, as is the case with the photovoltaic plate. The separation of the module layers with supercritical fluids allows components to be reused in new materials. One of the major difficulties in recycling solar panels is the delamination of their constituents. Thus, this work aimed to analyze the efficiency of supercritical technology with carbon dioxide (CO2) in the delamination of photovoltaic panels through the application of different cosolvents and the use of a planetary ball mill to enable exposure and access to high-value metals to be recycled. Several samples of a Canadian Solar model cs6Pp-265p photovoltaic plate were used. Toluene was used in the delamination of the photovoltaic module with supercritical CO2 (ScCO2) and comparatively in the system at atmospheric pressure. The variables pressure, temperature, solid:liquid ratio (S:L) and time were analyzed. The recovery efficiency and purity of the materials obtained after the process were carried out. The constituents of the photovoltaic module were subjected to analyzes of SEM/EDS, XRD, XRF, TGA, DSC and FTIR. ScCO2 showed advantages in terms of solvent volume and time when compared to the system at atmospheric pressure. After 60 min in ScCO2 and in the planetary ball mill, the recovery was close to 100% for the fractions of glass, metallic filament and protection sheet. The recovery of the solar cell and EVA was over 85%, which is satisfactory and allows the recovery of silicon and silver, metals of high value for the market. In addition, this reuse reduces the extraction of raw materials, bringing economic and environmental benefits.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESOs painéis fotovoltaicos são tecnologias que vêm aumentando gradativamente no mercado mundial e, após seu fim de vida, são considerados como resíduos eletrônicos. Há 250.000 toneladas métricas de resíduos de painéis solares em todo o mundo e esse número atingirá 78 milhões até 2050. Dentre algumas das consequências do descarte inadequado dos painéis fotovoltaicos, têm-se a percolação de metais pesados no solo, como o chumbo e o cádmio, e consequente impacto nos recursos hídricos e também perdas de alumínio e vidro, importantes para o mercado industrial. Além disso, ocorrem perdas de metais com alto valor agregado, como silício e prata. A importância de se reciclar os painéis fotovoltaicos vem ao encontro de se restituir ao processo produtivo esses materiais. A tecnologia de fluidos supercríticos vem se apresentando como uma técnica interessante para a reciclagem e extração de diversos materiais devido ao alto poder de solvatação e baixa viscosidade. E vantajoso utilizar essa tecnologia quando o objeto de extração possui alto valor agregado, como é o caso da placa fotovoltaica. A separação das camadas do módulo com fluidos supercríticos permite que componentes sejam reaproveitados em novos materiais. Umas das grandes dificuldades na reciclagem dos painéis solares é a delaminação de seus constituintes. Assim, esse trabalho teve como objetivo analisar a eficiência da tecnologia supercrítica com dióxido de carbono (CO2) na delaminação de painéis fotovoltaicos através da aplicação de diferentes cossolventes e uso de moinho de bolas planetário para possibilitar a exposição e acesso a metais de alto valor para serem reciclados. Foram utilizadas diversas amostras de uma placa fotovoltaica da marca Canadian Solar modelo cs6Pp-265p. Tolueno foi utilizado na delaminação do módulo fotovoltaico com CO2 supercrítico (ScCO2) e de forma comparativa no sistema à pressão atmosférica. As variáveis pressão, temperatura, razão sólido:líquido (S:L) e tempo foram analisadas. A eficiência de recuperação e pureza dos materiais obtidos após o processo foi realizada. Os constituintes do módulo fotovoltaico foram submetidos a análises de MEV/EDS, DRX, FRX, TGA, DSC e FTIR. O ScCO2 apresentou vantagens em relação ao volume de solvente e ao tempo quando comparado ao sistema à pressão atmosférica. Após 60 min no ScCO2 e no moinho de bolas planetário, a recuperação foi próxima a 100% para as frações de vidro, filamento metálico e folha de proteção. A recuperação da célula solar e EVA foi superior a 85%, a qual é satisfatória e possibilita a recuperação do silício metálico e prata, metais de alto valor para o mercado. Além disso, esse reaproveitamento reduz a extração de matéria-prima, trazendo benefícios econômicos e ambientais.Universidade Federal de Santa MariaBrasilEngenharia QuímicaUFSMPrograma de Pós-Graduação em Engenharia QuímicaCentro de TecnologiaBertuol, Daniel Assumpçãohttp://lattes.cnpq.br/7979212992364682Lopes, Poliana PollizelloTanabe, Eduardo HiromitsuCalgaro, Camila OttonelliLovato, Émilie Scheunemann2021-12-14T19:16:00Z2021-12-14T19:16:00Z2020-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/23309porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-12-30T12:04:06Zoai:repositorio.ufsm.br:1/23309Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-12-30T12:04:06Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
Application of supercritical CO2 in the delamination of a photovoltaic panel aiming the recovery of valuable materials
title Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
spellingShingle Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
Lovato, Émilie Scheunemann
Painéis fotovoltaicos
CO2 supercrítico
Tolueno
Silício
Photovoltaic panels
Supercritical CO2
Toluene
Silicon
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
title_short Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
title_full Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
title_fullStr Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
title_full_unstemmed Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
title_sort Aplicação de CO2 supercrítico na delaminação de um painel fotovoltaico visando a recuperação de materiais valiosos
author Lovato, Émilie Scheunemann
author_facet Lovato, Émilie Scheunemann
author_role author
dc.contributor.none.fl_str_mv Bertuol, Daniel Assumpção
http://lattes.cnpq.br/7979212992364682
Lopes, Poliana Pollizello
Tanabe, Eduardo Hiromitsu
Calgaro, Camila Ottonelli
dc.contributor.author.fl_str_mv Lovato, Émilie Scheunemann
dc.subject.por.fl_str_mv Painéis fotovoltaicos
CO2 supercrítico
Tolueno
Silício
Photovoltaic panels
Supercritical CO2
Toluene
Silicon
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
topic Painéis fotovoltaicos
CO2 supercrítico
Tolueno
Silício
Photovoltaic panels
Supercritical CO2
Toluene
Silicon
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA
description Photovoltaic panels are technologies that have been gradually increasing in the world market and, after their end of life, are considered as electronic waste. There are 250,000 metric tons of solar panel waste worldwide and that number will reach 78 million by 2050. Among some of the consequences of improper disposal of photovoltaic panels, there is the percolation of heavy metals in the soil, such as lead and cadmium, and consequent impact on water resources and also losses of aluminum and glass, important for the industrial market. In addition, there are losses of metals with high added value, such as silicon and silver. The importance of recycling photovoltaic panels meets the need to restore these materials to the production process. The technology of supercritical fluids has been presented as an interesting technique for the recycling and extraction of several materials due to the high solvation power and low viscosity. It is advantageous to use this technology when the extraction object has high added value, as is the case with the photovoltaic plate. The separation of the module layers with supercritical fluids allows components to be reused in new materials. One of the major difficulties in recycling solar panels is the delamination of their constituents. Thus, this work aimed to analyze the efficiency of supercritical technology with carbon dioxide (CO2) in the delamination of photovoltaic panels through the application of different cosolvents and the use of a planetary ball mill to enable exposure and access to high-value metals to be recycled. Several samples of a Canadian Solar model cs6Pp-265p photovoltaic plate were used. Toluene was used in the delamination of the photovoltaic module with supercritical CO2 (ScCO2) and comparatively in the system at atmospheric pressure. The variables pressure, temperature, solid:liquid ratio (S:L) and time were analyzed. The recovery efficiency and purity of the materials obtained after the process were carried out. The constituents of the photovoltaic module were subjected to analyzes of SEM/EDS, XRD, XRF, TGA, DSC and FTIR. ScCO2 showed advantages in terms of solvent volume and time when compared to the system at atmospheric pressure. After 60 min in ScCO2 and in the planetary ball mill, the recovery was close to 100% for the fractions of glass, metallic filament and protection sheet. The recovery of the solar cell and EVA was over 85%, which is satisfactory and allows the recovery of silicon and silver, metals of high value for the market. In addition, this reuse reduces the extraction of raw materials, bringing economic and environmental benefits.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-31
2021-12-14T19:16:00Z
2021-12-14T19:16:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23309
url http://repositorio.ufsm.br/handle/1/23309
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Química
UFSM
Programa de Pós-Graduação em Engenharia Química
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1805922054094979072