Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000481m |
Texto Completo: | http://repositorio.ufsm.br/handle/1/27647 |
Resumo: | Insulation degradation in substation electrical equipment is a problem that needs to be identified before the equipment is broken, in order to avoid causing an unexpected interruption that affects the energy supply. Another important point is to ensure the safety of employers who work in the operation, inspection and maintenance of this equipment. Partial discharges are a major cause of this failure, and there is an increasing concern to identify in a time effective manner, in order not to compromise the equipment, in addition to being of great interest the classification of the severity level of the partial discharge, allowing thus, preventive maintenance. On the other hand, the acoustic signals present in substations tend to be very polluted, since it’s a place containing numerous electrical equipment that generate acoustic noise, signals at high frequencies and magnetic fields that can affect acoustic measurements. For this reason, it is necessary to carry out signal processing to filter the important characteristics, that must be analyzed during the identification and classification of partial discharge. In this work it was proposed to use the Wavelet transform to perform the signal decomposition in several levels of approximation, detail and signal energy. With the support of the literature, the Daubechies family was identified as the most promising to work with acoustic signals. With the support of the Extra High Voltage Laboratory – Federal University of Pará, it generated a population of acoustic signals from partial discharge tests in glass insulators, which formed the database that supported the studies of this work. Using an exploratory data analysis in conjunction with principal components analysis, the results obtained from the Wavelet transform, 75% of signals were classified correctly, without using machine learning techniques, using a rule for graphical analysis, which compared the first and second principal components with each other. The possibility of creating a second rule to classify the rest of the population was also found, which could increase the effectiveness of the method, however the population decreases to a point where it affects the validation of the method, requiring more signals to reach a conclusion about its assertiveness. The coefficients obtained from the Wavelet transform can be easily modeled to work with machine learning which can improve the efficiency of the method. |
id |
UFSM_a4bed1a46585c1a6a2f5d0d68e2dda27 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/27647 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciaisWavelets coeficientes analyse to classifing signal of noise from partial discharges signalsDescargas parciaisprocessamento de sinaissinais acústicosWaveletPartial dischargessignal processingacoustic signalwaveletsCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAInsulation degradation in substation electrical equipment is a problem that needs to be identified before the equipment is broken, in order to avoid causing an unexpected interruption that affects the energy supply. Another important point is to ensure the safety of employers who work in the operation, inspection and maintenance of this equipment. Partial discharges are a major cause of this failure, and there is an increasing concern to identify in a time effective manner, in order not to compromise the equipment, in addition to being of great interest the classification of the severity level of the partial discharge, allowing thus, preventive maintenance. On the other hand, the acoustic signals present in substations tend to be very polluted, since it’s a place containing numerous electrical equipment that generate acoustic noise, signals at high frequencies and magnetic fields that can affect acoustic measurements. For this reason, it is necessary to carry out signal processing to filter the important characteristics, that must be analyzed during the identification and classification of partial discharge. In this work it was proposed to use the Wavelet transform to perform the signal decomposition in several levels of approximation, detail and signal energy. With the support of the literature, the Daubechies family was identified as the most promising to work with acoustic signals. With the support of the Extra High Voltage Laboratory – Federal University of Pará, it generated a population of acoustic signals from partial discharge tests in glass insulators, which formed the database that supported the studies of this work. Using an exploratory data analysis in conjunction with principal components analysis, the results obtained from the Wavelet transform, 75% of signals were classified correctly, without using machine learning techniques, using a rule for graphical analysis, which compared the first and second principal components with each other. The possibility of creating a second rule to classify the rest of the population was also found, which could increase the effectiveness of the method, however the population decreases to a point where it affects the validation of the method, requiring more signals to reach a conclusion about its assertiveness. The coefficients obtained from the Wavelet transform can be easily modeled to work with machine learning which can improve the efficiency of the method.A degradação da isolação em equipamentos elétricos em subestação é um problema que precisa ser identificado antes do comprometimento do equipamento, para não ocasionar em uma interrupção inesperada que afete o fornecimento de energia. Outro ponto importante é de garantir a segurança dos colaboradores que trabalham na manobra, inspeção e manutenção destes equipamentos. Descargas parciais são grandes causadoras dessa falha, e cada vez mais aumenta-se a preocupação em identifica-las em tempo hábil, a fim de não comprometer o equipamento, além de ser de grande interesse a classificação do nível de severidade da descarga parcial, possibilitando assim, a manutenção preventiva. Apresentando como solução o método da inspeção acústica dos equipamentos se apresenta ser promissora para identificar o fenômeno já que o mesmo apresenta sinais acústico, em altas frequências, mesmo quando a descarga ainda está em fase inicial. Além do método não ser invasivo e poder ser avaliado em distância segura, sem a necessidade de interromper o funcionamento do equipamento. Em contrapartida, os sinais acústicos presentes em subestações tendem a ser muito poluídos, já que é um local com inúmeros equipamentos elétricos que geram ruídos acústicos, sinais em altas frequências e campos magnéticos que podem afetar as medições acústicas. Por esse motivo é necessário realizar o processamento do sinal para filtrar as características importantes, quais devem ser analisados na identificação e classificação da Descarga Parcial (DP). Neste trabalho foi proposto utilizar da transformada de Wavelet para realizar a decomposição do sinal em vários níveis de aproximação, detalhe e energia do sinal. Com o apoio da literatura identificou-se a família Daubechies como mais promissora a se trabalhar com os sinais acústicos. Com o apoio do Laboratório de Extra Alta Tensão – Universidade Federal do Pará, gerou-se uma população de sinais acústicos provindos de ensaios de descargas parciais em isoladores de vidro, estes formaram a base de dados para os estudos deste trabalho. Utilizando de uma análise exploratória de dados em conjunto com ACP dos resultados obtidos da transformada de Wavelet, foi classificado 75% de sinais de maneira correta, sem utilizar de técnicas de aprendizado de máquina, utilizando de uma regra para análise gráfica, que comparou a primeira e segunda componentes principais entre si. Encontrou-se ainda a possibilidade de criar uma segunda regra para classificar o restante da população podendo aumentar a assertividade do método, entretanto a população se torna pequena para chegar a validar o método necessitando de mais sinais para chegar a uma conclusão sobre sua assertividade. Os coeficientes obtidos da transformada de Wavelet podem ser facilmente modelados para se trabalhar com aprendizado de máquina o qual pode elevar a assertividade do método.Universidade Federal de Santa MariaBrasilUFSMCentro de TecnologiaOliveira, Aécio Lima deCastro, João Vitor Maccari Brabo2023-01-20T17:27:09Z2023-01-20T17:27:09Z2023-01-102022Trabalho de Conclusão de Curso de Graduaçãoinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://repositorio.ufsm.br/handle/1/27647ark:/26339/001300000481mporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-01-20T17:27:09Zoai:repositorio.ufsm.br:1/27647Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-01-20T17:27:09Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais Wavelets coeficientes analyse to classifing signal of noise from partial discharges signals |
title |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais |
spellingShingle |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais Castro, João Vitor Maccari Brabo Descargas parciais processamento de sinais sinais acústicos Wavelet Partial discharges signal processing acoustic signal wavelets CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais |
title_full |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais |
title_fullStr |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais |
title_full_unstemmed |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais |
title_sort |
Análise de coeficientes wavelet para classificação de sinais acústicos de descarga parciais |
author |
Castro, João Vitor Maccari Brabo |
author_facet |
Castro, João Vitor Maccari Brabo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Oliveira, Aécio Lima de |
dc.contributor.author.fl_str_mv |
Castro, João Vitor Maccari Brabo |
dc.subject.por.fl_str_mv |
Descargas parciais processamento de sinais sinais acústicos Wavelet Partial discharges signal processing acoustic signal wavelets CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Descargas parciais processamento de sinais sinais acústicos Wavelet Partial discharges signal processing acoustic signal wavelets CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
Insulation degradation in substation electrical equipment is a problem that needs to be identified before the equipment is broken, in order to avoid causing an unexpected interruption that affects the energy supply. Another important point is to ensure the safety of employers who work in the operation, inspection and maintenance of this equipment. Partial discharges are a major cause of this failure, and there is an increasing concern to identify in a time effective manner, in order not to compromise the equipment, in addition to being of great interest the classification of the severity level of the partial discharge, allowing thus, preventive maintenance. On the other hand, the acoustic signals present in substations tend to be very polluted, since it’s a place containing numerous electrical equipment that generate acoustic noise, signals at high frequencies and magnetic fields that can affect acoustic measurements. For this reason, it is necessary to carry out signal processing to filter the important characteristics, that must be analyzed during the identification and classification of partial discharge. In this work it was proposed to use the Wavelet transform to perform the signal decomposition in several levels of approximation, detail and signal energy. With the support of the literature, the Daubechies family was identified as the most promising to work with acoustic signals. With the support of the Extra High Voltage Laboratory – Federal University of Pará, it generated a population of acoustic signals from partial discharge tests in glass insulators, which formed the database that supported the studies of this work. Using an exploratory data analysis in conjunction with principal components analysis, the results obtained from the Wavelet transform, 75% of signals were classified correctly, without using machine learning techniques, using a rule for graphical analysis, which compared the first and second principal components with each other. The possibility of creating a second rule to classify the rest of the population was also found, which could increase the effectiveness of the method, however the population decreases to a point where it affects the validation of the method, requiring more signals to reach a conclusion about its assertiveness. The coefficients obtained from the Wavelet transform can be easily modeled to work with machine learning which can improve the efficiency of the method. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-01-20T17:27:09Z 2023-01-20T17:27:09Z 2023-01-10 |
dc.type.driver.fl_str_mv |
Trabalho de Conclusão de Curso de Graduação |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/27647 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000481m |
url |
http://repositorio.ufsm.br/handle/1/27647 |
identifier_str_mv |
ark:/26339/001300000481m |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil UFSM Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil UFSM Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172279934386176 |