Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira

Detalhes bibliográficos
Autor(a) principal: Goergen, Laura Camila de Godoy
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000x116
Texto Completo: http://repositorio.ufsm.br/handle/1/8730
Resumo: The objective of this study was to test the potential of satellite imagery, TM/Landsat 5, for discrimination of plantations of different ages of Eucalyptus dunnii and Eucalyptus urograndis and correlate the volume of these plantations, obtained from forest inventory, with the spectral responses. The values of spectral reflectance of the surface of the original images were recovered and after image geocoding the values of reflectance were extracted in six spectral bands TM sensor (B1, B2, B3, B4, B5 and B7) stand for the four groups studied: E. dunnii age 3 and age 5 and E. urograndis to 2.2 years and 4.2 years of age. In addition to the spectral bands vegetation indices SR, NDVI, SAVI_0.5, SAVI_0.25, MVI and GNDVI were used. To evaluate the behavior of the spectral variables for each stand, it was performed an analysis of principal components which, for the year 2009 , the variables B2 , B3 , GNDVI , B4 , B5 and B1 , were, in descending order , the most significaqnt. And for the year 2011, the most significant values were the SAVI_0.25, SAVI_0.5, B4, SR, MVI, NDVI and B2 variables, in descending order. From the discriminant analysis data of three discriminant functions (λ) to separate the four groups were generated. The structural attributes with better discriminatory power (in order of importance) were: SAVI_0.25, SAVI_0.5, B5, MVI, B7, B1 and B3. The discriminant model generated showed that functions correctly classified 100% of the cases in their predicted groups, revealing that the spectral variables were good predictors for distinguishing plantations. Correlation analysis between the biophysical variable (timber volume) was not significant for the planting of E. dunnii at 3 years old. For the planting of E. dunnii at 5 years was the most correlated variable B2 (r= -0.55). The B4 was the variable most strongly correlated with the volume in plantations of E. urograndis at 2.2 years old (r= 0.75) followed by the index Ln (SAVI_0.5) with r= 0.72. For E. urograndis at 4.2 years of age, the variables with the highest correlation were B2 (r= 0.67), followed by Ln (SAVI_0.5) with r= 0.63. From the correlation coefficients obtained, equations to estimate the volume were modeled. For the settlement of E. dunnii at 5 years, the best fitted equation explained 48% of the variability in the volume. The population of E. urograndis at 2.2 years obtained the best results, in which 57% of the variability was explained by the volume of spectral variables. The population of E. urograndis at 4.2 years obtained the lowest results, where only 45% of the variability was explained by the volume spectral variables. It was concluded that the methodology can be used to aid in species identification from satellite images and further studies should be conducted to estimate volume from spectral variables.
id UFSM_add5ea57375dc639a6d0d3bc22d7fa14
oai_identifier_str oai:repositorio.ufsm.br:1/8730
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeiraUse of Landsat 5 TM images reflectance for identification Eucalyptus dunnii and Eucalyptus urograndis and its correlation with the volume of woodSensoriamento remotoÍndice de vegetaçãoInventário florestalRemote sensingVegetation indexForest inventoryCNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTALThe objective of this study was to test the potential of satellite imagery, TM/Landsat 5, for discrimination of plantations of different ages of Eucalyptus dunnii and Eucalyptus urograndis and correlate the volume of these plantations, obtained from forest inventory, with the spectral responses. The values of spectral reflectance of the surface of the original images were recovered and after image geocoding the values of reflectance were extracted in six spectral bands TM sensor (B1, B2, B3, B4, B5 and B7) stand for the four groups studied: E. dunnii age 3 and age 5 and E. urograndis to 2.2 years and 4.2 years of age. In addition to the spectral bands vegetation indices SR, NDVI, SAVI_0.5, SAVI_0.25, MVI and GNDVI were used. To evaluate the behavior of the spectral variables for each stand, it was performed an analysis of principal components which, for the year 2009 , the variables B2 , B3 , GNDVI , B4 , B5 and B1 , were, in descending order , the most significaqnt. And for the year 2011, the most significant values were the SAVI_0.25, SAVI_0.5, B4, SR, MVI, NDVI and B2 variables, in descending order. From the discriminant analysis data of three discriminant functions (λ) to separate the four groups were generated. The structural attributes with better discriminatory power (in order of importance) were: SAVI_0.25, SAVI_0.5, B5, MVI, B7, B1 and B3. The discriminant model generated showed that functions correctly classified 100% of the cases in their predicted groups, revealing that the spectral variables were good predictors for distinguishing plantations. Correlation analysis between the biophysical variable (timber volume) was not significant for the planting of E. dunnii at 3 years old. For the planting of E. dunnii at 5 years was the most correlated variable B2 (r= -0.55). The B4 was the variable most strongly correlated with the volume in plantations of E. urograndis at 2.2 years old (r= 0.75) followed by the index Ln (SAVI_0.5) with r= 0.72. For E. urograndis at 4.2 years of age, the variables with the highest correlation were B2 (r= 0.67), followed by Ln (SAVI_0.5) with r= 0.63. From the correlation coefficients obtained, equations to estimate the volume were modeled. For the settlement of E. dunnii at 5 years, the best fitted equation explained 48% of the variability in the volume. The population of E. urograndis at 2.2 years obtained the best results, in which 57% of the variability was explained by the volume of spectral variables. The population of E. urograndis at 4.2 years obtained the lowest results, where only 45% of the variability was explained by the volume spectral variables. It was concluded that the methodology can be used to aid in species identification from satellite images and further studies should be conducted to estimate volume from spectral variables.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorO objetivo deste trabalho foi testar o potencial de imagem de satélite, TM/Landsat 5, na discriminação de plantios de diferentes idades de Eucalyptus dunnii e Eucalyptus urograndis e, correlacionar o volume desses plantios, obtidos a partir de inventário florestal, com as respostas espectrais. Os valores de reflectância espectral de superfície foram recuperados das imagens originais e após o georreferenciamento da imagem foram extraídos os valores das reflectâncias em seis bandas espectrais do sensor TM (B1, B2, B3, B4, B5 e B7) para os quatro povoamentos estudados: E. dunnii aos 3 anos e aos 5 anos e E. urograndis aos 2,2 anos e 4,2 anos de idade. Além das bandas espectrais foram utilizados os índices de vegetação SR, NDVI, SAVI_0,5, SAVI_0,25, MVI e GNDVI. Para avaliar o comportamento das variáveis espectrais para cada povoamento foi realizada uma análise de componentes principais em que, para o ano de 2009, as variáveis B2, B3, GNDVI, B4, B5 e B1, foram, em ordem decrescente, as mais significativas. E para o ano de 2011, os valores mais significativos corresponderam as variáveis SAVI_0,25, SAVI_0,5, B4, SR, MVI, NDVI e B2, em ordem decrescente. A partir da análise discriminante dos dados foram geradas três funções discriminantes (λ) para separação dos quatro grupos. Os atributos estruturais com melhor poder de discriminação (em ordem de importância) foram: SAVI_0,25, SAVI_0,5, B5, MVI, B7, B1 e B3. O modelo discriminante gerado demonstrou que as funções classificaram 100% dos casos em seus grupos preditos, revelando que as variáveis espectrais foram boas preditoras para distinguir os plantios. A análise de correlação entre a variável biofísica (volume de madeira) não foi significativa para o plantio de E. dunnii aos 3 anos de idade. Para o plantio de E. dunnii aos 5 anos a variável mais correlacionada foi B2 (r= -0,55). A B4 foi a variável com maior correlação com o volume nos plantios de E. urograndis aos 2,2 anos de idade (r= 0,75) seguido do índice Ln (SAVI_0,5) com r= 0,72. Para E. urograndis aos 4,2 anos de idade, as variáveis com maior correlação foram B2 (r= 0,67), seguido de Ln (SAVI_0,5) com r= 0,63. A partir dos coeficientes de correlação obtidos, foram modeladas equações para estimativa do volume. Para o povoamento de E. dunnii aos 5 anos, a melhor equação ajustada explicou 48% da variabilidade do volume. O povoamento de E. urograndis aos 2,2 anos obteve os melhores resultados, em que 57% da variabilidade do volume foi explicada pelas variáveis espectrais estudadas. O povoamento de E. urograndis aos 4,2 anos obteve os menores resultados, em que apenas 45% da variabilidade do volume foi explicada pelas variáveis espectrais. Conclui-se que a metodologia empregada pode ser utilizada para auxiliar na identificação de espécies a partir de imagens de satélite e novos estudos devem ser realizados para a estimativa de volume a partir de variáveis espectrais.Universidade Federal de Santa MariaBRRecursos Florestais e Engenharia FlorestalUFSMPrograma de Pós-Graduação em Engenharia FlorestalPereira, Rudiney Soareshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783643H0Arce, Julio Eduardohttp://lattes.cnpq.br/4034397326977747Weber, Liane de Souzahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790584A1Goergen, Laura Camila de Godoy2014-10-012014-10-012014-01-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfGOERGEN, Laura Camila de Godoy. USE OF LANDSAT 5 TM IMAGES REFLECTANCE FOR IDENTIFICATION Eucalyptus dunnii and Eucalyptus urograndis AND ITS CORRELATION WITH THE VOLUME OF WOOD. 2014. 100 f. Dissertação (Mestrado em Recursos Florestais e Engenharia Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2014.http://repositorio.ufsm.br/handle/1/8730ark:/26339/001300000x116porinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-07-04T14:29:37Zoai:repositorio.ufsm.br:1/8730Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-07-04T14:29:37Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
Use of Landsat 5 TM images reflectance for identification Eucalyptus dunnii and Eucalyptus urograndis and its correlation with the volume of wood
title Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
spellingShingle Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
Goergen, Laura Camila de Godoy
Sensoriamento remoto
Índice de vegetação
Inventário florestal
Remote sensing
Vegetation index
Forest inventory
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
title_short Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
title_full Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
title_fullStr Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
title_full_unstemmed Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
title_sort Uso da reflectância de imagens Landsat 5 TM na identificação de plantios de Eucalyptus dunnii e Eucalyptus urograndis e sua correlação com o volume de madeira
author Goergen, Laura Camila de Godoy
author_facet Goergen, Laura Camila de Godoy
author_role author
dc.contributor.none.fl_str_mv Pereira, Rudiney Soares
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4783643H0
Arce, Julio Eduardo
http://lattes.cnpq.br/4034397326977747
Weber, Liane de Souza
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4790584A1
dc.contributor.author.fl_str_mv Goergen, Laura Camila de Godoy
dc.subject.por.fl_str_mv Sensoriamento remoto
Índice de vegetação
Inventário florestal
Remote sensing
Vegetation index
Forest inventory
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
topic Sensoriamento remoto
Índice de vegetação
Inventário florestal
Remote sensing
Vegetation index
Forest inventory
CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL
description The objective of this study was to test the potential of satellite imagery, TM/Landsat 5, for discrimination of plantations of different ages of Eucalyptus dunnii and Eucalyptus urograndis and correlate the volume of these plantations, obtained from forest inventory, with the spectral responses. The values of spectral reflectance of the surface of the original images were recovered and after image geocoding the values of reflectance were extracted in six spectral bands TM sensor (B1, B2, B3, B4, B5 and B7) stand for the four groups studied: E. dunnii age 3 and age 5 and E. urograndis to 2.2 years and 4.2 years of age. In addition to the spectral bands vegetation indices SR, NDVI, SAVI_0.5, SAVI_0.25, MVI and GNDVI were used. To evaluate the behavior of the spectral variables for each stand, it was performed an analysis of principal components which, for the year 2009 , the variables B2 , B3 , GNDVI , B4 , B5 and B1 , were, in descending order , the most significaqnt. And for the year 2011, the most significant values were the SAVI_0.25, SAVI_0.5, B4, SR, MVI, NDVI and B2 variables, in descending order. From the discriminant analysis data of three discriminant functions (λ) to separate the four groups were generated. The structural attributes with better discriminatory power (in order of importance) were: SAVI_0.25, SAVI_0.5, B5, MVI, B7, B1 and B3. The discriminant model generated showed that functions correctly classified 100% of the cases in their predicted groups, revealing that the spectral variables were good predictors for distinguishing plantations. Correlation analysis between the biophysical variable (timber volume) was not significant for the planting of E. dunnii at 3 years old. For the planting of E. dunnii at 5 years was the most correlated variable B2 (r= -0.55). The B4 was the variable most strongly correlated with the volume in plantations of E. urograndis at 2.2 years old (r= 0.75) followed by the index Ln (SAVI_0.5) with r= 0.72. For E. urograndis at 4.2 years of age, the variables with the highest correlation were B2 (r= 0.67), followed by Ln (SAVI_0.5) with r= 0.63. From the correlation coefficients obtained, equations to estimate the volume were modeled. For the settlement of E. dunnii at 5 years, the best fitted equation explained 48% of the variability in the volume. The population of E. urograndis at 2.2 years obtained the best results, in which 57% of the variability was explained by the volume of spectral variables. The population of E. urograndis at 4.2 years obtained the lowest results, where only 45% of the variability was explained by the volume spectral variables. It was concluded that the methodology can be used to aid in species identification from satellite images and further studies should be conducted to estimate volume from spectral variables.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-01
2014-10-01
2014-01-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GOERGEN, Laura Camila de Godoy. USE OF LANDSAT 5 TM IMAGES REFLECTANCE FOR IDENTIFICATION Eucalyptus dunnii and Eucalyptus urograndis AND ITS CORRELATION WITH THE VOLUME OF WOOD. 2014. 100 f. Dissertação (Mestrado em Recursos Florestais e Engenharia Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2014.
http://repositorio.ufsm.br/handle/1/8730
dc.identifier.dark.fl_str_mv ark:/26339/001300000x116
identifier_str_mv GOERGEN, Laura Camila de Godoy. USE OF LANDSAT 5 TM IMAGES REFLECTANCE FOR IDENTIFICATION Eucalyptus dunnii and Eucalyptus urograndis AND ITS CORRELATION WITH THE VOLUME OF WOOD. 2014. 100 f. Dissertação (Mestrado em Recursos Florestais e Engenharia Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2014.
ark:/26339/001300000x116
url http://repositorio.ufsm.br/handle/1/8730
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Recursos Florestais e Engenharia Florestal
UFSM
Programa de Pós-Graduação em Engenharia Florestal
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Recursos Florestais e Engenharia Florestal
UFSM
Programa de Pós-Graduação em Engenharia Florestal
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172410522992640