Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000tc0s |
Texto Completo: | http://repositorio.ufsm.br/handle/1/18504 |
Resumo: | Climatic changes in the last years project a future where water resources become more and more scarce. For that reason, it will affect considerably the world food production. A persistent challenge for agriculture is to maintain a high yield production and fit wisely and reasonably the water use with weather conditions in order to get optimal yield results. Currently, remote sensing provides constant crop scout, especially due to water stress correspondence with biophysical characteristics of vegetation during its growth. The combination of vegetation indices with plant features at the field level provides valuable information to irrigation monitoring and management during crop development. In this study, soybeans (Glycine Max) characteristics were analyzed, in Southern Brazil, for a field with full water demands supplied and a rainfed field. Field data were collected during all crop season, registering information as crop phenology, the fraction of ground covered, the leaf area index, crop height, and grain yield. These data were used such for the simulation phase, as a source for crop yield prediction, utilizing soybeans crop coefficients derived from vegetation indices for classification of the yield map, provided by the harvester machine at the end of the season. The experiment and data collection were established from November 2017 to April 2018. The results of the actual crop coefficents estimated with NDVi showed a consistent relation with data provided by SimDualKc, for both rainfed and irrigated fields, with correlation factors around 92% and regression coefficent equal to 1. Such numbers demonstrate how much the estimativates trend from simulated validated data. This statistics highlight how much the soybeans transpirative fluxes, with basal crop coefficent Kcb, might be evaluated through remote sensing to support irrigation management. These basal crop coefficents were parallel with harvest maps and yield, considering 22 satellite images. With machine learning approach, accuracy values of 90% were found using as feature Kcb, based on decision three classifier. Adding simulated data with the remote sensing estimates, Adaboost classifier was the most efficient, with 97,1% of accuracy. This paper show results that implies that it is possible estimate soybeans grain yield based on plant transpiration and remote sensing data. |
id |
UFSM_c29a1d6baf1e4988ece2dd4a406d6804 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/18504 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do BrasilCombining high resolution multispectral images and soilwater balance model to estimate soybean water requirements in Southern BrazilPredição de rendimentosSensoriamento remotoSojaImagens multiespectraisClassificação supervisionadaAprendizado de máquinaYield predictionRemote sensingSoybeansMultispectral imagesSupervised classificationMachine learningCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOClimatic changes in the last years project a future where water resources become more and more scarce. For that reason, it will affect considerably the world food production. A persistent challenge for agriculture is to maintain a high yield production and fit wisely and reasonably the water use with weather conditions in order to get optimal yield results. Currently, remote sensing provides constant crop scout, especially due to water stress correspondence with biophysical characteristics of vegetation during its growth. The combination of vegetation indices with plant features at the field level provides valuable information to irrigation monitoring and management during crop development. In this study, soybeans (Glycine Max) characteristics were analyzed, in Southern Brazil, for a field with full water demands supplied and a rainfed field. Field data were collected during all crop season, registering information as crop phenology, the fraction of ground covered, the leaf area index, crop height, and grain yield. These data were used such for the simulation phase, as a source for crop yield prediction, utilizing soybeans crop coefficients derived from vegetation indices for classification of the yield map, provided by the harvester machine at the end of the season. The experiment and data collection were established from November 2017 to April 2018. The results of the actual crop coefficents estimated with NDVi showed a consistent relation with data provided by SimDualKc, for both rainfed and irrigated fields, with correlation factors around 92% and regression coefficent equal to 1. Such numbers demonstrate how much the estimativates trend from simulated validated data. This statistics highlight how much the soybeans transpirative fluxes, with basal crop coefficent Kcb, might be evaluated through remote sensing to support irrigation management. These basal crop coefficents were parallel with harvest maps and yield, considering 22 satellite images. With machine learning approach, accuracy values of 90% were found using as feature Kcb, based on decision three classifier. Adding simulated data with the remote sensing estimates, Adaboost classifier was the most efficient, with 97,1% of accuracy. This paper show results that implies that it is possible estimate soybeans grain yield based on plant transpiration and remote sensing data.As mudanças climáticas nos últimos anos projetam um horizonte em que os recursos hídricos se tornem cada vez mais escassos e, por este motivo, irão afetar consideravelmente a produção de alimentos no mundo. Um desafio constante para a agricultura é manter o nível de produção elevado e empregar de forma inteligente e racional a água em complemento às condições climáticas para que se possa obter o melhor rendimento com precisão na aplicação de irrigação. Atualmente, o sensoriamento remoto permite o monitoramento contínuo das culturas, sobretudo em virtude das correspondências do estresse hídrico e das características biofísicas da vegetação durante seu crescimento. A combinação de índices de vegetação com as características da planta analisadas em nível de campo fornecem informações valiosas ao manejo e monitoramento de irrigação durante o desenvolvimento das culturas. Neste estudo, foram analisadas as características da cultura da soja (Glycine Max), na região central do Rio Grande do Sul, Brasil, para área com total disponibilidade hídrica e área de sequeiro. Dados em campo foram coletados durante todo o período de cultivo, registrando informações como estádio fenológico, fração de cobertura do solo, índice de área foliar, altura da planta e rendimento dos grãos. Estes dados foram usados tanto para simulação, quanto para a origem do modelo de predição de rendimento, utilizando coeficientes de cultura da soja gerados com índices de vegetação para classificação dos dados obtidos pelo mapa de rendimento fornecido pela colhedora ao final da safra. O experimento e coleta de dados foram estabelecidos nos meses de novembro de 2017 à abril de 2018. Os resultados dos coeficientes de cultura estimados com NDVI mostraram uma relação consistente com os dados encontrados no simulador SimDualKc para área irrigada e sequeiro, com fatores de correlação superiores 90% e coeficiente de regressão iguais a 1. Tais indicadores representam que tanto a tendência quanto as estimativas estão próximas dos valores simulados. Isso ressalta que a demanda transpirativa da soja, com o coeficiente basal Kcb, pode ser avaliada por meio de sensoriamento remoto em apoio ao manejo de irrigação. Estes coeficientes basais foram confrontados com o mapa de colheita e seus valores de rendimento de grãos considerando 22 imagens de satélite. Por meio de abordagens de aprendizado de máquina, encontrou-se valores de acurácia superiores a 90% considerando Kcb, pelo classificador de árvore de decisão. Adicionando coeficientes simulados com os coeficientes de sensoriamento remoto, o classificador Adaboost se mostrou mais eficiente para predição das oscilações de rendimento, com acurácia de 97,1%. O presente trabalho apresenta resultados que implicam que é possível classificar rendimentos para a cultura da soja, baseado na na transpiração da planta e dados de sensoriamento remoto.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em Ciência da ComputaçãoCentro de TecnologiaLima, João Carlos Damascenohttp://lattes.cnpq.br/8369217264362638Petry, Mirta Teresinhahttp://lattes.cnpq.br/0358609083747198Trois, Celiohttp://lattes.cnpq.br/1906595965183698Martins, Juliano Dalcinhttp://lattes.cnpq.br/5624403392916420Cerutti, Douglas Henrique Haubert2019-10-08T13:28:16Z2019-10-08T13:28:16Z2019-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/18504ark:/26339/001300000tc0sporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-24T13:37:23Zoai:repositorio.ufsm.br:1/18504Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-24T13:37:23Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil Combining high resolution multispectral images and soilwater balance model to estimate soybean water requirements in Southern Brazil |
title |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil |
spellingShingle |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil Cerutti, Douglas Henrique Haubert Predição de rendimentos Sensoriamento remoto Soja Imagens multiespectrais Classificação supervisionada Aprendizado de máquina Yield prediction Remote sensing Soybeans Multispectral images Supervised classification Machine learning CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil |
title_full |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil |
title_fullStr |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil |
title_full_unstemmed |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil |
title_sort |
Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil |
author |
Cerutti, Douglas Henrique Haubert |
author_facet |
Cerutti, Douglas Henrique Haubert |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lima, João Carlos Damasceno http://lattes.cnpq.br/8369217264362638 Petry, Mirta Teresinha http://lattes.cnpq.br/0358609083747198 Trois, Celio http://lattes.cnpq.br/1906595965183698 Martins, Juliano Dalcin http://lattes.cnpq.br/5624403392916420 |
dc.contributor.author.fl_str_mv |
Cerutti, Douglas Henrique Haubert |
dc.subject.por.fl_str_mv |
Predição de rendimentos Sensoriamento remoto Soja Imagens multiespectrais Classificação supervisionada Aprendizado de máquina Yield prediction Remote sensing Soybeans Multispectral images Supervised classification Machine learning CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
Predição de rendimentos Sensoriamento remoto Soja Imagens multiespectrais Classificação supervisionada Aprendizado de máquina Yield prediction Remote sensing Soybeans Multispectral images Supervised classification Machine learning CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Climatic changes in the last years project a future where water resources become more and more scarce. For that reason, it will affect considerably the world food production. A persistent challenge for agriculture is to maintain a high yield production and fit wisely and reasonably the water use with weather conditions in order to get optimal yield results. Currently, remote sensing provides constant crop scout, especially due to water stress correspondence with biophysical characteristics of vegetation during its growth. The combination of vegetation indices with plant features at the field level provides valuable information to irrigation monitoring and management during crop development. In this study, soybeans (Glycine Max) characteristics were analyzed, in Southern Brazil, for a field with full water demands supplied and a rainfed field. Field data were collected during all crop season, registering information as crop phenology, the fraction of ground covered, the leaf area index, crop height, and grain yield. These data were used such for the simulation phase, as a source for crop yield prediction, utilizing soybeans crop coefficients derived from vegetation indices for classification of the yield map, provided by the harvester machine at the end of the season. The experiment and data collection were established from November 2017 to April 2018. The results of the actual crop coefficents estimated with NDVi showed a consistent relation with data provided by SimDualKc, for both rainfed and irrigated fields, with correlation factors around 92% and regression coefficent equal to 1. Such numbers demonstrate how much the estimativates trend from simulated validated data. This statistics highlight how much the soybeans transpirative fluxes, with basal crop coefficent Kcb, might be evaluated through remote sensing to support irrigation management. These basal crop coefficents were parallel with harvest maps and yield, considering 22 satellite images. With machine learning approach, accuracy values of 90% were found using as feature Kcb, based on decision three classifier. Adding simulated data with the remote sensing estimates, Adaboost classifier was the most efficient, with 97,1% of accuracy. This paper show results that implies that it is possible estimate soybeans grain yield based on plant transpiration and remote sensing data. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-08T13:28:16Z 2019-10-08T13:28:16Z 2019-03-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/18504 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000tc0s |
url |
http://repositorio.ufsm.br/handle/1/18504 |
identifier_str_mv |
ark:/26339/001300000tc0s |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Ciência da Computação UFSM Programa de Pós-Graduação em Ciência da Computação Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172395454955520 |