Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil

Detalhes bibliográficos
Autor(a) principal: Cerutti, Douglas Henrique Haubert
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000tc0s
Texto Completo: http://repositorio.ufsm.br/handle/1/18504
Resumo: Climatic changes in the last years project a future where water resources become more and more scarce. For that reason, it will affect considerably the world food production. A persistent challenge for agriculture is to maintain a high yield production and fit wisely and reasonably the water use with weather conditions in order to get optimal yield results. Currently, remote sensing provides constant crop scout, especially due to water stress correspondence with biophysical characteristics of vegetation during its growth. The combination of vegetation indices with plant features at the field level provides valuable information to irrigation monitoring and management during crop development. In this study, soybeans (Glycine Max) characteristics were analyzed, in Southern Brazil, for a field with full water demands supplied and a rainfed field. Field data were collected during all crop season, registering information as crop phenology, the fraction of ground covered, the leaf area index, crop height, and grain yield. These data were used such for the simulation phase, as a source for crop yield prediction, utilizing soybeans crop coefficients derived from vegetation indices for classification of the yield map, provided by the harvester machine at the end of the season. The experiment and data collection were established from November 2017 to April 2018. The results of the actual crop coefficents estimated with NDVi showed a consistent relation with data provided by SimDualKc, for both rainfed and irrigated fields, with correlation factors around 92% and regression coefficent equal to 1. Such numbers demonstrate how much the estimativates trend from simulated validated data. This statistics highlight how much the soybeans transpirative fluxes, with basal crop coefficent Kcb, might be evaluated through remote sensing to support irrigation management. These basal crop coefficents were parallel with harvest maps and yield, considering 22 satellite images. With machine learning approach, accuracy values of 90% were found using as feature Kcb, based on decision three classifier. Adding simulated data with the remote sensing estimates, Adaboost classifier was the most efficient, with 97,1% of accuracy. This paper show results that implies that it is possible estimate soybeans grain yield based on plant transpiration and remote sensing data.
id UFSM_c29a1d6baf1e4988ece2dd4a406d6804
oai_identifier_str oai:repositorio.ufsm.br:1/18504
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do BrasilCombining high resolution multispectral images and soilwater balance model to estimate soybean water requirements in Southern BrazilPredição de rendimentosSensoriamento remotoSojaImagens multiespectraisClassificação supervisionadaAprendizado de máquinaYield predictionRemote sensingSoybeansMultispectral imagesSupervised classificationMachine learningCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOClimatic changes in the last years project a future where water resources become more and more scarce. For that reason, it will affect considerably the world food production. A persistent challenge for agriculture is to maintain a high yield production and fit wisely and reasonably the water use with weather conditions in order to get optimal yield results. Currently, remote sensing provides constant crop scout, especially due to water stress correspondence with biophysical characteristics of vegetation during its growth. The combination of vegetation indices with plant features at the field level provides valuable information to irrigation monitoring and management during crop development. In this study, soybeans (Glycine Max) characteristics were analyzed, in Southern Brazil, for a field with full water demands supplied and a rainfed field. Field data were collected during all crop season, registering information as crop phenology, the fraction of ground covered, the leaf area index, crop height, and grain yield. These data were used such for the simulation phase, as a source for crop yield prediction, utilizing soybeans crop coefficients derived from vegetation indices for classification of the yield map, provided by the harvester machine at the end of the season. The experiment and data collection were established from November 2017 to April 2018. The results of the actual crop coefficents estimated with NDVi showed a consistent relation with data provided by SimDualKc, for both rainfed and irrigated fields, with correlation factors around 92% and regression coefficent equal to 1. Such numbers demonstrate how much the estimativates trend from simulated validated data. This statistics highlight how much the soybeans transpirative fluxes, with basal crop coefficent Kcb, might be evaluated through remote sensing to support irrigation management. These basal crop coefficents were parallel with harvest maps and yield, considering 22 satellite images. With machine learning approach, accuracy values of 90% were found using as feature Kcb, based on decision three classifier. Adding simulated data with the remote sensing estimates, Adaboost classifier was the most efficient, with 97,1% of accuracy. This paper show results that implies that it is possible estimate soybeans grain yield based on plant transpiration and remote sensing data.As mudanças climáticas nos últimos anos projetam um horizonte em que os recursos hídricos se tornem cada vez mais escassos e, por este motivo, irão afetar consideravelmente a produção de alimentos no mundo. Um desafio constante para a agricultura é manter o nível de produção elevado e empregar de forma inteligente e racional a água em complemento às condições climáticas para que se possa obter o melhor rendimento com precisão na aplicação de irrigação. Atualmente, o sensoriamento remoto permite o monitoramento contínuo das culturas, sobretudo em virtude das correspondências do estresse hídrico e das características biofísicas da vegetação durante seu crescimento. A combinação de índices de vegetação com as características da planta analisadas em nível de campo fornecem informações valiosas ao manejo e monitoramento de irrigação durante o desenvolvimento das culturas. Neste estudo, foram analisadas as características da cultura da soja (Glycine Max), na região central do Rio Grande do Sul, Brasil, para área com total disponibilidade hídrica e área de sequeiro. Dados em campo foram coletados durante todo o período de cultivo, registrando informações como estádio fenológico, fração de cobertura do solo, índice de área foliar, altura da planta e rendimento dos grãos. Estes dados foram usados tanto para simulação, quanto para a origem do modelo de predição de rendimento, utilizando coeficientes de cultura da soja gerados com índices de vegetação para classificação dos dados obtidos pelo mapa de rendimento fornecido pela colhedora ao final da safra. O experimento e coleta de dados foram estabelecidos nos meses de novembro de 2017 à abril de 2018. Os resultados dos coeficientes de cultura estimados com NDVI mostraram uma relação consistente com os dados encontrados no simulador SimDualKc para área irrigada e sequeiro, com fatores de correlação superiores 90% e coeficiente de regressão iguais a 1. Tais indicadores representam que tanto a tendência quanto as estimativas estão próximas dos valores simulados. Isso ressalta que a demanda transpirativa da soja, com o coeficiente basal Kcb, pode ser avaliada por meio de sensoriamento remoto em apoio ao manejo de irrigação. Estes coeficientes basais foram confrontados com o mapa de colheita e seus valores de rendimento de grãos considerando 22 imagens de satélite. Por meio de abordagens de aprendizado de máquina, encontrou-se valores de acurácia superiores a 90% considerando Kcb, pelo classificador de árvore de decisão. Adicionando coeficientes simulados com os coeficientes de sensoriamento remoto, o classificador Adaboost se mostrou mais eficiente para predição das oscilações de rendimento, com acurácia de 97,1%. O presente trabalho apresenta resultados que implicam que é possível classificar rendimentos para a cultura da soja, baseado na na transpiração da planta e dados de sensoriamento remoto.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em Ciência da ComputaçãoCentro de TecnologiaLima, João Carlos Damascenohttp://lattes.cnpq.br/8369217264362638Petry, Mirta Teresinhahttp://lattes.cnpq.br/0358609083747198Trois, Celiohttp://lattes.cnpq.br/1906595965183698Martins, Juliano Dalcinhttp://lattes.cnpq.br/5624403392916420Cerutti, Douglas Henrique Haubert2019-10-08T13:28:16Z2019-10-08T13:28:16Z2019-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/18504ark:/26339/001300000tc0sporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-06-24T13:37:23Zoai:repositorio.ufsm.br:1/18504Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-06-24T13:37:23Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
Combining high resolution multispectral images and soilwater balance model to estimate soybean water requirements in Southern Brazil
title Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
spellingShingle Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
Cerutti, Douglas Henrique Haubert
Predição de rendimentos
Sensoriamento remoto
Soja
Imagens multiespectrais
Classificação supervisionada
Aprendizado de máquina
Yield prediction
Remote sensing
Soybeans
Multispectral images
Supervised classification
Machine learning
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
title_full Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
title_fullStr Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
title_full_unstemmed Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
title_sort Combinação de imagens multi-espectrais e modelo de balanço hídrico para predição de rendimentos da soja no Sul do Brasil
author Cerutti, Douglas Henrique Haubert
author_facet Cerutti, Douglas Henrique Haubert
author_role author
dc.contributor.none.fl_str_mv Lima, João Carlos Damasceno
http://lattes.cnpq.br/8369217264362638
Petry, Mirta Teresinha
http://lattes.cnpq.br/0358609083747198
Trois, Celio
http://lattes.cnpq.br/1906595965183698
Martins, Juliano Dalcin
http://lattes.cnpq.br/5624403392916420
dc.contributor.author.fl_str_mv Cerutti, Douglas Henrique Haubert
dc.subject.por.fl_str_mv Predição de rendimentos
Sensoriamento remoto
Soja
Imagens multiespectrais
Classificação supervisionada
Aprendizado de máquina
Yield prediction
Remote sensing
Soybeans
Multispectral images
Supervised classification
Machine learning
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Predição de rendimentos
Sensoriamento remoto
Soja
Imagens multiespectrais
Classificação supervisionada
Aprendizado de máquina
Yield prediction
Remote sensing
Soybeans
Multispectral images
Supervised classification
Machine learning
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Climatic changes in the last years project a future where water resources become more and more scarce. For that reason, it will affect considerably the world food production. A persistent challenge for agriculture is to maintain a high yield production and fit wisely and reasonably the water use with weather conditions in order to get optimal yield results. Currently, remote sensing provides constant crop scout, especially due to water stress correspondence with biophysical characteristics of vegetation during its growth. The combination of vegetation indices with plant features at the field level provides valuable information to irrigation monitoring and management during crop development. In this study, soybeans (Glycine Max) characteristics were analyzed, in Southern Brazil, for a field with full water demands supplied and a rainfed field. Field data were collected during all crop season, registering information as crop phenology, the fraction of ground covered, the leaf area index, crop height, and grain yield. These data were used such for the simulation phase, as a source for crop yield prediction, utilizing soybeans crop coefficients derived from vegetation indices for classification of the yield map, provided by the harvester machine at the end of the season. The experiment and data collection were established from November 2017 to April 2018. The results of the actual crop coefficents estimated with NDVi showed a consistent relation with data provided by SimDualKc, for both rainfed and irrigated fields, with correlation factors around 92% and regression coefficent equal to 1. Such numbers demonstrate how much the estimativates trend from simulated validated data. This statistics highlight how much the soybeans transpirative fluxes, with basal crop coefficent Kcb, might be evaluated through remote sensing to support irrigation management. These basal crop coefficents were parallel with harvest maps and yield, considering 22 satellite images. With machine learning approach, accuracy values of 90% were found using as feature Kcb, based on decision three classifier. Adding simulated data with the remote sensing estimates, Adaboost classifier was the most efficient, with 97,1% of accuracy. This paper show results that implies that it is possible estimate soybeans grain yield based on plant transpiration and remote sensing data.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-08T13:28:16Z
2019-10-08T13:28:16Z
2019-03-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/18504
dc.identifier.dark.fl_str_mv ark:/26339/001300000tc0s
url http://repositorio.ufsm.br/handle/1/18504
identifier_str_mv ark:/26339/001300000tc0s
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172395454955520