Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah

Detalhes bibliográficos
Autor(a) principal: Araújo, Ronyere Olegário de
Data de Publicação: 2009
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000x6qj
Texto Completo: http://repositorio.ufsm.br/handle/1/10746
Resumo: The aimed of this work was to study the adjustment of classical non linear models, Von Bertalanffy, Brody, Gompertz, Logistic to growing records of buffaloes of Murrah breed, raised on lowlands in the State of Rio Grande do Sul, and to estimate covariance components by Bayesian focus, for growing curve parameters with biological interpretation. In paper 01 there were studied the adjustment of the classical non linear models already mentioned to growing data for a group of 66 buffaloes females, born from 1982 to 1989, sired by three males and 38 females. There were evaluated the traits Asymptotic weight (A) and Maturity rate (K). The total pair of records weight-age was 26 weighting/female and 1,638 observations. The criterions utilized to select the model that better adjust the growing curve were: asymptotic standard deviation (DPA); the determination coefficient (R2); the residual absolute average deviation (DMA) and asymptotic index (AI). It was concluded that all the models overestimated the birth weight (PN) in bigger or smaller magnitude. In crescent order, the models Von Bertalanffy, Gompertz, Logistic and Brody overestimated PN by 28.55; 32.74; 42.70 and 43.45 kg, respectively. The Logistic model underestimated A (-2.09 kg) and Von Bertalanffy, Gompertz, and Brody overestimated A in crescent order 8.04, 17.7 and 280.33 kg, respectively. Based on the adjustment criterions and in the predicted curves behavior, the Gompertz model, followed by Logistic and Von Bertalanffy were the best adjustment. In Paper 2 there were studied the adjustments of the same models and for the same traits in Paper 01 for a group of 67 buffaloes, born from 1982 to 1989 sired by three males and 42 females. It was concluded that all the models overestimated PN. Von Bertalanffy and Brody models overestimated A, and Gompertz and Logistic models underestimated it. The smaller DPA was obtained by Brody model characterizing a bigger R2 but this model presented the bigger DMA. Considering all the criterions, Gompertz model presented the best adjustment followed by Logistic and Von Bertalanffy. It is suggested do not use Brody model to describe the growing curve for animals of Murrah breed raised in the conditions of this work. In Paper 3 there were estimated covariance components and genetic parameters by Bayesian focus, using the Family BLUPF90, for the parameters A and K, estimated by Gompertz model and adopting an animal model. The heritability coefficients presented elevated values for A and for K (0.57 and 0.34, respectively), indicating that selection can be used as an instrument for change the curve shape of this population. However, the use of this information must be done with to much attention because these traits are negatively correlated. In this case a restricted selection index should be used with more success.
id UFSM_c5678ae022f92b24ebd7e962e4f5352b
oai_identifier_str oai:repositorio.ufsm.br:1/10746
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça MurrahCovariance components estimated by bayesian methodology for biological parameters obtained by nonlinear models for buffalo breed MurrahAmostragem de gibbsBubalinosParâmetros genéticosPeso assintóticoTaxa de maturaçãoAsymptotic weightBuffaloesGenetic parametersGibbs samplesMaturity rateCNPQ::CIENCIAS AGRARIAS::ZOOTECNIAThe aimed of this work was to study the adjustment of classical non linear models, Von Bertalanffy, Brody, Gompertz, Logistic to growing records of buffaloes of Murrah breed, raised on lowlands in the State of Rio Grande do Sul, and to estimate covariance components by Bayesian focus, for growing curve parameters with biological interpretation. In paper 01 there were studied the adjustment of the classical non linear models already mentioned to growing data for a group of 66 buffaloes females, born from 1982 to 1989, sired by three males and 38 females. There were evaluated the traits Asymptotic weight (A) and Maturity rate (K). The total pair of records weight-age was 26 weighting/female and 1,638 observations. The criterions utilized to select the model that better adjust the growing curve were: asymptotic standard deviation (DPA); the determination coefficient (R2); the residual absolute average deviation (DMA) and asymptotic index (AI). It was concluded that all the models overestimated the birth weight (PN) in bigger or smaller magnitude. In crescent order, the models Von Bertalanffy, Gompertz, Logistic and Brody overestimated PN by 28.55; 32.74; 42.70 and 43.45 kg, respectively. The Logistic model underestimated A (-2.09 kg) and Von Bertalanffy, Gompertz, and Brody overestimated A in crescent order 8.04, 17.7 and 280.33 kg, respectively. Based on the adjustment criterions and in the predicted curves behavior, the Gompertz model, followed by Logistic and Von Bertalanffy were the best adjustment. In Paper 2 there were studied the adjustments of the same models and for the same traits in Paper 01 for a group of 67 buffaloes, born from 1982 to 1989 sired by three males and 42 females. It was concluded that all the models overestimated PN. Von Bertalanffy and Brody models overestimated A, and Gompertz and Logistic models underestimated it. The smaller DPA was obtained by Brody model characterizing a bigger R2 but this model presented the bigger DMA. Considering all the criterions, Gompertz model presented the best adjustment followed by Logistic and Von Bertalanffy. It is suggested do not use Brody model to describe the growing curve for animals of Murrah breed raised in the conditions of this work. In Paper 3 there were estimated covariance components and genetic parameters by Bayesian focus, using the Family BLUPF90, for the parameters A and K, estimated by Gompertz model and adopting an animal model. The heritability coefficients presented elevated values for A and for K (0.57 and 0.34, respectively), indicating that selection can be used as an instrument for change the curve shape of this population. However, the use of this information must be done with to much attention because these traits are negatively correlated. In this case a restricted selection index should be used with more success.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorObjetivou-se com este trabalho estudar o ajuste de modelos não-lineares Von Bertalanffy, Brody, Gompertz e Logístico aos dados de crescimento de búfalos(as) da raça Murrah criados em terras baixas no Estado do Rio Grande do Sul e estimar os componentes de (co)variâncias, sob enfoque Bayesiano, para os parâmetros da curva de crescimento com interpretação biológica. No Capítulo 01 foram estudados os ajustes dos modelos não-lineares, supracitados, aos dados de crescimento para um grupo de 63 búfalas, nascidas no período de 1982 a 1989, filhas de três reprodutores e 38 matrizes. Foram avaliadas as características Peso Assintótico (A) e a Taxa de Maturação (K). Os pares de registro peso-idade totalizaram 26 pesagens/fêmea e 1.638 observações. Os critérios utilizados para selecionar o modelo de melhor ajuste à curva de crescimento foram: desvio padrão assintótico (DPA); o coeficiente de determinação (R2); o desvio médio absoluto dos resíduos (DMA) e o índice assintótico (IA). Em ordem crescente, os modelos Von Bertalanffy, Gompertz, Brody e Logístico superestimaram o PN em 28,55; 32,74; 42,70 e 43,45 kg, respectivamente. O modelo Logístico subestimou o A (-2,09 kg) e os demais modelos (Gompertz, Von Bertalanffy e Brody) superestimaram este parâmetro, em: 8,04; 17,7 e 280,33 kg, respectivamente. Com base nos critérios de ajuste e na visualização das curvas preditas, o modelo Gompertz, seguido dos modelos Logístico e Von Bertalanffy seriam os de melhor ajuste. No Capítulo 02 estudaram-se os ajustes dos mesmos modelos para as mesmas características referenciados no Capítulo 01, aos dados de crescimento para um grupo de 64 búfalos, nascidos no período de 1982 a 1989, filhos de três reprodutores e 42 matrizes. Concluiu-se que todos os modelos superestimaram o PN. Os modelos Von Bertalanffy e Brody superestimaram o A em 14,7 e 167,22 kg, respectivamente, ao passo que os modelos Gompertz e Logístico o subestimaram em 5 e 13 kg, respectivamente. Considerando todos os critérios, o modelo Logístico apresentou o melhor ajuste seguido dos modelos Gompertz e Von Bertalanffy. Sugere-se que o modelo Brody não seja utilizado para descrever a curva de crescimento de búfalos(as) da raça Murrah, criados sob as condições deste trabalho. No Capítulo 03, foram estimados os componentes de (co)variâncias e os parâmetros genéticos sob enfoque Bayesiano, utilizando os programas da Família BLUPF90, dos parâmetros A e K, estimados pelo modelo Gompertz, adotando um modelo animal. Os coeficientes de herdabilidade foram de elevada magnitude tanto para A quanto para K (0,57 e 0,34, respectivamente), indicando que a seleção pode ser usada como instrumento para alterar a forma da curva de crescimento desses animais. Entretanto, o uso dessas informações deve ser feito com grande cautela, uma vez que as características a serem trabalhadas na modificação do formato da curva de crescimento são negativamente correlacionadas, além também, da grande variabilidade das estimativas. Neste caso, os índices de seleção restritos poderiam ser utilizados com maior sucesso.Universidade Federal de Santa MariaBRZootecniaUFSMPrograma de Pós-Graduação em ZootecniaRorato, Paulo Roberto Nogarahttp://lattes.cnpq.br/6804416984369871Garnero, Analía Del Vallehttp://lattes.cnpq.br/4075727326925108Pacheco, Paulo Santanahttp://lattes.cnpq.br/9700645244479913Araújo, Ronyere Olegário de2010-02-182010-02-182009-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfARAÚJO, Ronyere Olegário de. Covariance components estimated by bayesian methodology for biological parameters obtained by nonlinear models for buffalo breed Murrah. 2009. 74 f. Dissertação (Mestrado em Zootecnia) - Universidade Federal de Santa Maria, Santa Maria, 2009.http://repositorio.ufsm.br/handle/1/10746ark:/26339/001300000x6qjporinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-05-08T11:56:19Zoai:repositorio.ufsm.br:1/10746Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-05-08T11:56:19Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
Covariance components estimated by bayesian methodology for biological parameters obtained by nonlinear models for buffalo breed Murrah
title Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
spellingShingle Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
Araújo, Ronyere Olegário de
Amostragem de gibbs
Bubalinos
Parâmetros genéticos
Peso assintótico
Taxa de maturação
Asymptotic weight
Buffaloes
Genetic parameters
Gibbs samples
Maturity rate
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
title_short Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
title_full Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
title_fullStr Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
title_full_unstemmed Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
title_sort Componentes de covariâncias estimados por metodologia bayesiana para parâmetros biológicos obtidos por modelos não lineares para bubalinos da raça Murrah
author Araújo, Ronyere Olegário de
author_facet Araújo, Ronyere Olegário de
author_role author
dc.contributor.none.fl_str_mv Rorato, Paulo Roberto Nogara
http://lattes.cnpq.br/6804416984369871
Garnero, Analía Del Valle
http://lattes.cnpq.br/4075727326925108
Pacheco, Paulo Santana
http://lattes.cnpq.br/9700645244479913
dc.contributor.author.fl_str_mv Araújo, Ronyere Olegário de
dc.subject.por.fl_str_mv Amostragem de gibbs
Bubalinos
Parâmetros genéticos
Peso assintótico
Taxa de maturação
Asymptotic weight
Buffaloes
Genetic parameters
Gibbs samples
Maturity rate
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
topic Amostragem de gibbs
Bubalinos
Parâmetros genéticos
Peso assintótico
Taxa de maturação
Asymptotic weight
Buffaloes
Genetic parameters
Gibbs samples
Maturity rate
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
description The aimed of this work was to study the adjustment of classical non linear models, Von Bertalanffy, Brody, Gompertz, Logistic to growing records of buffaloes of Murrah breed, raised on lowlands in the State of Rio Grande do Sul, and to estimate covariance components by Bayesian focus, for growing curve parameters with biological interpretation. In paper 01 there were studied the adjustment of the classical non linear models already mentioned to growing data for a group of 66 buffaloes females, born from 1982 to 1989, sired by three males and 38 females. There were evaluated the traits Asymptotic weight (A) and Maturity rate (K). The total pair of records weight-age was 26 weighting/female and 1,638 observations. The criterions utilized to select the model that better adjust the growing curve were: asymptotic standard deviation (DPA); the determination coefficient (R2); the residual absolute average deviation (DMA) and asymptotic index (AI). It was concluded that all the models overestimated the birth weight (PN) in bigger or smaller magnitude. In crescent order, the models Von Bertalanffy, Gompertz, Logistic and Brody overestimated PN by 28.55; 32.74; 42.70 and 43.45 kg, respectively. The Logistic model underestimated A (-2.09 kg) and Von Bertalanffy, Gompertz, and Brody overestimated A in crescent order 8.04, 17.7 and 280.33 kg, respectively. Based on the adjustment criterions and in the predicted curves behavior, the Gompertz model, followed by Logistic and Von Bertalanffy were the best adjustment. In Paper 2 there were studied the adjustments of the same models and for the same traits in Paper 01 for a group of 67 buffaloes, born from 1982 to 1989 sired by three males and 42 females. It was concluded that all the models overestimated PN. Von Bertalanffy and Brody models overestimated A, and Gompertz and Logistic models underestimated it. The smaller DPA was obtained by Brody model characterizing a bigger R2 but this model presented the bigger DMA. Considering all the criterions, Gompertz model presented the best adjustment followed by Logistic and Von Bertalanffy. It is suggested do not use Brody model to describe the growing curve for animals of Murrah breed raised in the conditions of this work. In Paper 3 there were estimated covariance components and genetic parameters by Bayesian focus, using the Family BLUPF90, for the parameters A and K, estimated by Gompertz model and adopting an animal model. The heritability coefficients presented elevated values for A and for K (0.57 and 0.34, respectively), indicating that selection can be used as an instrument for change the curve shape of this population. However, the use of this information must be done with to much attention because these traits are negatively correlated. In this case a restricted selection index should be used with more success.
publishDate 2009
dc.date.none.fl_str_mv 2009-12-14
2010-02-18
2010-02-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ARAÚJO, Ronyere Olegário de. Covariance components estimated by bayesian methodology for biological parameters obtained by nonlinear models for buffalo breed Murrah. 2009. 74 f. Dissertação (Mestrado em Zootecnia) - Universidade Federal de Santa Maria, Santa Maria, 2009.
http://repositorio.ufsm.br/handle/1/10746
dc.identifier.dark.fl_str_mv ark:/26339/001300000x6qj
identifier_str_mv ARAÚJO, Ronyere Olegário de. Covariance components estimated by bayesian methodology for biological parameters obtained by nonlinear models for buffalo breed Murrah. 2009. 74 f. Dissertação (Mestrado em Zootecnia) - Universidade Federal de Santa Maria, Santa Maria, 2009.
ark:/26339/001300000x6qj
url http://repositorio.ufsm.br/handle/1/10746
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1822612331804229632