Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000rzhz |
Texto Completo: | http://repositorio.ufsm.br/handle/1/15227 |
Resumo: | Under the current scenario of climate change, the inclusion of precise knowledge of individually-based thermal exposures estimates with physiological traits, allows to formulate objective metrics to assess present ectotherm vulnerability to climate change. The variation of thermal tolerance boundaries (CTmax and CTmin) can help to understand the mechanisms underlying macroecological and biogeographical patterns regarding species distributional range, species richness gradients, physiological barriers and dispersal capacities. However, there are disparities in CTmax estimates, depending on ramping rates. There are controversies about whether the benefits by employing realistic slow heating against a fast rate which avoid collateral nuisance processes that affect thermal resistance. Nevertheless, the ability of organisms to deal physiologically with global warming basically relies on two factors: (i) how close organisms are to their thermal limits in nature and, (ii) the degree to which organisms can adjust, or acclimatize, their thermal sensitivity. In the present thesis, we tested the macrophysiological hypotheses related to the physiological thermal limits and the ability to adjust them (thermal plasticity), including, whenever possible, the effect of the microhabitat structure, the thermal seasonality at different spatial scales and the phylogenetic history of species. Since the dynamic model for estimating the thermal physiological limits inherently includes an interaction between time and temperature, we will also test the latitudinal variation in the expression of hardening estimating this metric at different heating rates (fast and slow) that incorporate, simultaneously, the ability to adjust CTmax and cumulative damage to extreme temperatures. Our results showed that thermal tolerance range is higher according latitude increase due the drop of minimum temperatures which promote adaptation in cold resistance in subtropical community and for highly distributed species. The spatial and temporal thermal heterogeneity occurring in tropical and subtropical habitats, validated by our microclimatic predictors, determined species thermal adaptation and vulnerability, which reflect in the observed interspecific divergence of physiological limits within microhabitats and between seasons. That is, species tadpoles living in open areas or in hot seasons tend to have greater vulnerability and higher CTmax when compared to forest species or that reproduce in cold seasons, without variation along the studied latitudinal gradient. Although subtropical and mainly temperate species are exposed to higher thermal variability than tropical ones, hot (ARRmax) and cold (ARRmin) thermal plasticity not differed between regions, whereas were slightly higher in tropical species. We did not find relationship between basal CTmax and ARRmax, as well as, ARRmax and ARRmin. In any case, acclimation response found for CTmax was rather small in magnitude and probably insufficient to compensate alone, increased temperatures caused by climate change. The results using different rates of temperature changes unfit the predictions of greater losses in CTmax in tropical and subtropical species and are more compatible with the adaptive scenario of greater hardening compensation in most of tropical and subtropical species, mainly in the high thermotolerant species (HTS). In this context, when assessed at realistic conditions, our estimates of warming tolerances showed that amphibian tadpole species will increase vulnerability and decrease hardening expression with latitude. Our results allowed testing macrophysiological hypotheses in a refined way, including the environmental thermal heterogeneity, the species evolutionary history and the physiological traits particularities of communities and species of each of the studied regions, which contributed to the discussion about the pertinence of current macrophysiological hypotheses, generated new questions and perspectives for the continuity of research in this area. |
id |
UFSM_cd3f75de7b255c34505b44178dff8a63 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/15227 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogeniaLatitudinal variation of thermal tolerance limits and plasticity in amphibians in a climate change scenario: the effect of microhabitats, seasonality and filogenyCTmaxCTminMacrofisiologiaGirinosTolerância ao aquecimentoAquecimento globalHardeningStress térmicoAclimatação térmicaMacrophysiologyTadpolesWarming toleranceGlobal warmingHardeningHeat stressThermal acclimationCNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICAUnder the current scenario of climate change, the inclusion of precise knowledge of individually-based thermal exposures estimates with physiological traits, allows to formulate objective metrics to assess present ectotherm vulnerability to climate change. The variation of thermal tolerance boundaries (CTmax and CTmin) can help to understand the mechanisms underlying macroecological and biogeographical patterns regarding species distributional range, species richness gradients, physiological barriers and dispersal capacities. However, there are disparities in CTmax estimates, depending on ramping rates. There are controversies about whether the benefits by employing realistic slow heating against a fast rate which avoid collateral nuisance processes that affect thermal resistance. Nevertheless, the ability of organisms to deal physiologically with global warming basically relies on two factors: (i) how close organisms are to their thermal limits in nature and, (ii) the degree to which organisms can adjust, or acclimatize, their thermal sensitivity. In the present thesis, we tested the macrophysiological hypotheses related to the physiological thermal limits and the ability to adjust them (thermal plasticity), including, whenever possible, the effect of the microhabitat structure, the thermal seasonality at different spatial scales and the phylogenetic history of species. Since the dynamic model for estimating the thermal physiological limits inherently includes an interaction between time and temperature, we will also test the latitudinal variation in the expression of hardening estimating this metric at different heating rates (fast and slow) that incorporate, simultaneously, the ability to adjust CTmax and cumulative damage to extreme temperatures. Our results showed that thermal tolerance range is higher according latitude increase due the drop of minimum temperatures which promote adaptation in cold resistance in subtropical community and for highly distributed species. The spatial and temporal thermal heterogeneity occurring in tropical and subtropical habitats, validated by our microclimatic predictors, determined species thermal adaptation and vulnerability, which reflect in the observed interspecific divergence of physiological limits within microhabitats and between seasons. That is, species tadpoles living in open areas or in hot seasons tend to have greater vulnerability and higher CTmax when compared to forest species or that reproduce in cold seasons, without variation along the studied latitudinal gradient. Although subtropical and mainly temperate species are exposed to higher thermal variability than tropical ones, hot (ARRmax) and cold (ARRmin) thermal plasticity not differed between regions, whereas were slightly higher in tropical species. We did not find relationship between basal CTmax and ARRmax, as well as, ARRmax and ARRmin. In any case, acclimation response found for CTmax was rather small in magnitude and probably insufficient to compensate alone, increased temperatures caused by climate change. The results using different rates of temperature changes unfit the predictions of greater losses in CTmax in tropical and subtropical species and are more compatible with the adaptive scenario of greater hardening compensation in most of tropical and subtropical species, mainly in the high thermotolerant species (HTS). In this context, when assessed at realistic conditions, our estimates of warming tolerances showed that amphibian tadpole species will increase vulnerability and decrease hardening expression with latitude. Our results allowed testing macrophysiological hypotheses in a refined way, including the environmental thermal heterogeneity, the species evolutionary history and the physiological traits particularities of communities and species of each of the studied regions, which contributed to the discussion about the pertinence of current macrophysiological hypotheses, generated new questions and perspectives for the continuity of research in this area.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESNo cenário atual de mudanças climáticas, a inclusão do conhecimento preciso de estimativas de características fisiológicas baseadas em exposições térmicas permite formular métricas objetivas para avaliar a vulnerabilidade atual dos ectotermos às mudanças climáticas. A variação dos limites térmicos (CTmax e CTmin) pode ser uma importante ferramenta para compreender os mecanismos subjacentes dos padrões macroecológicos e biogeográficos relacionados à área de distribuição das espécies, gradientes da riqueza de espécies, barreiras fisiológicas e capacidades de dispersão. No entanto, existem disparidades nas estimativas de CTmax, dependendo das taxas de mudança da temperatura utilizadas. Controvérsias recentes na literatura discutem o quanto é benéfico empregar taxas de aquecimento ecologicamente realistas (lentas) em relação a taxas rápidas, as quais podem evitar processos fisiológicos causadores de vieses na estimativa da resistência térmica. De qualquer forma, a capacidade dos organismos para lidar fisiologicamente com o aquecimento global baseia-se em dois fatores: (i) o quão próximo os organismos estão de seus limites térmicos na natureza e (ii) o grau em que os organismos podem ajustar ou aclimatar seus limites térmicos. Na presente tese, buscamos testar as hipóteses macrofisiológicas relacionadas aos padrões dos limites térmicos fisiológicos e da capacidade de ajustar os mesmos incluindo, sempre que possível, o efeito da estrutura do micro-habitat, da sazonalidade térmica em diferentes escalas espaciais e da história evolutiva das espécies. Além disso, dado que o modelo dinâmico de estimativa dos limites fisiológicos térmicos empregados aqui inclui, inerentemente, uma interação entre tempo e temperatura, testamos também a variação latitudinal na expressão de hardening estimando essa métrica em diferentes taxas de aquecimento (rápida e lenta) o que incorpora, simultaneamente, a capacidade de ajustar o CTmax e o dano cumulativo às temperaturas extremas. O intervalo de tolerância térmica foi maior conforme o aumento da latitude devido à queda das temperaturas mínimas que promovem a adaptação da resistência ao frio na comunidade subtropical e para espécies amplamente distribuídas. A heterogeneidade temporal e espacial observada nos habitats tropicais e subtropicais, validado por nossas medidas microclimáticas refinadas, determinaram a adaptação térmica e a vulnerabilidade das espécies, refletindo na divergência interespecífica observada dos limites térmicos entre microhabitats tropicais e estações do ano subtropicais. Ou seja, larvas de espécies que vivem em áreas abertas ou em estações quentes tendem a possuir uma maior vulnerabilidade e maior CTmax quando comparadas as espécies florestais ou que se reproduzem em estações frias, sem variação no gradiente latitudinal estudado. As espécies subtropicais e, principalmente, as temperadas estão expostas a maior variabilidade térmica do que as tropicais, no entanto a plasticidade térmica ao calor (ARRmax) e ao frio (ARRmin) não diferiram entre regiões, embora se mostraram ligeiramente maiores em espécies tropicais. Não encontramos relação entre CTmax basal e ARRmax, bem como, ARRmax e ARRmin. Em qualquer caso, a resposta de aclimatação encontrada para CTmax foi menor e provavelmente insuficiente para compensar o aumento das temperaturas causadas pelas mudanças climáticas. Os resultados utilizando diferentes taxas de mudanças de temperatura não suportaram às previsões de maiores perdas no CTmax em espécies tropicais e subtropicais e são mais compatíveis com o cenário adaptativo de maior compensação de hardening para a maioria das espécies tropicais e subtropicais, principalmente as espécies com elevada resistênciao calor (HTS). Nesse caso, quando avaliadas em condições realistas, nossas estimativas de WT (warming tolerance) mostraram que as espécies de anfíbios aumentaram a vulnerabilidade e diminuíram a expressão de hardening com o aumento da latitude. Nossos resultados permitiram o teste de hipóteses macrofisiológicas de maneira refinada, incluindo a heterogeneidade térmica ambiental, a história evolutiva e as particularidades dos traços fisiológicos de comunidades e espécies de cada uma das regiões estudadas, o que contribuiu com a discussão sobre a pertinência das hipóteses macrofisiológicas atuais, gerando novas perguntas e perspectivas para a continuidade de pesquisas na área.Universidade Federal de Santa MariaBrasilBioquímicaUFSMPrograma de Pós-Graduação em Biodiversidade AnimalCentro de Ciências Naturais e ExatasCechin, Sonia Zaninihttp://lattes.cnpq.br/9682463613649812Santos, Tiago Gomes doshttp://lattes.cnpq.br/5811514780628956Iannini, Carlos Arturo Navashttp://lattes.cnpq.br/6537600070487889Dambros, Cristian de Saleshttp://lattes.cnpq.br/4109250841061137Gonsales, Elaine Maria Lucashttp://lattes.cnpq.br/0891104842008447Moura, Mauricio Osvaldohttp://lattes.cnpq.br/0091501164531871Madalozzo, Bruno2019-01-07T13:21:52Z2019-01-07T13:21:52Z2018-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/15227ark:/26339/001300000rzhzporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-01-08T05:01:53Zoai:repositorio.ufsm.br:1/15227Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-01-08T05:01:53Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia Latitudinal variation of thermal tolerance limits and plasticity in amphibians in a climate change scenario: the effect of microhabitats, seasonality and filogeny |
title |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia |
spellingShingle |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia Madalozzo, Bruno CTmax CTmin Macrofisiologia Girinos Tolerância ao aquecimento Aquecimento global Hardening Stress térmico Aclimatação térmica Macrophysiology Tadpoles Warming tolerance Global warming Hardening Heat stress Thermal acclimation CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA |
title_short |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia |
title_full |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia |
title_fullStr |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia |
title_full_unstemmed |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia |
title_sort |
Variação latitudinal nos limites de tolerância e plasticidade térmica em anfíbios em um cenário de mudanças climáticas: efeito dos micro-habitats, sazonalidade e filogenia |
author |
Madalozzo, Bruno |
author_facet |
Madalozzo, Bruno |
author_role |
author |
dc.contributor.none.fl_str_mv |
Cechin, Sonia Zanini http://lattes.cnpq.br/9682463613649812 Santos, Tiago Gomes dos http://lattes.cnpq.br/5811514780628956 Iannini, Carlos Arturo Navas http://lattes.cnpq.br/6537600070487889 Dambros, Cristian de Sales http://lattes.cnpq.br/4109250841061137 Gonsales, Elaine Maria Lucas http://lattes.cnpq.br/0891104842008447 Moura, Mauricio Osvaldo http://lattes.cnpq.br/0091501164531871 |
dc.contributor.author.fl_str_mv |
Madalozzo, Bruno |
dc.subject.por.fl_str_mv |
CTmax CTmin Macrofisiologia Girinos Tolerância ao aquecimento Aquecimento global Hardening Stress térmico Aclimatação térmica Macrophysiology Tadpoles Warming tolerance Global warming Hardening Heat stress Thermal acclimation CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA |
topic |
CTmax CTmin Macrofisiologia Girinos Tolerância ao aquecimento Aquecimento global Hardening Stress térmico Aclimatação térmica Macrophysiology Tadpoles Warming tolerance Global warming Hardening Heat stress Thermal acclimation CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA |
description |
Under the current scenario of climate change, the inclusion of precise knowledge of individually-based thermal exposures estimates with physiological traits, allows to formulate objective metrics to assess present ectotherm vulnerability to climate change. The variation of thermal tolerance boundaries (CTmax and CTmin) can help to understand the mechanisms underlying macroecological and biogeographical patterns regarding species distributional range, species richness gradients, physiological barriers and dispersal capacities. However, there are disparities in CTmax estimates, depending on ramping rates. There are controversies about whether the benefits by employing realistic slow heating against a fast rate which avoid collateral nuisance processes that affect thermal resistance. Nevertheless, the ability of organisms to deal physiologically with global warming basically relies on two factors: (i) how close organisms are to their thermal limits in nature and, (ii) the degree to which organisms can adjust, or acclimatize, their thermal sensitivity. In the present thesis, we tested the macrophysiological hypotheses related to the physiological thermal limits and the ability to adjust them (thermal plasticity), including, whenever possible, the effect of the microhabitat structure, the thermal seasonality at different spatial scales and the phylogenetic history of species. Since the dynamic model for estimating the thermal physiological limits inherently includes an interaction between time and temperature, we will also test the latitudinal variation in the expression of hardening estimating this metric at different heating rates (fast and slow) that incorporate, simultaneously, the ability to adjust CTmax and cumulative damage to extreme temperatures. Our results showed that thermal tolerance range is higher according latitude increase due the drop of minimum temperatures which promote adaptation in cold resistance in subtropical community and for highly distributed species. The spatial and temporal thermal heterogeneity occurring in tropical and subtropical habitats, validated by our microclimatic predictors, determined species thermal adaptation and vulnerability, which reflect in the observed interspecific divergence of physiological limits within microhabitats and between seasons. That is, species tadpoles living in open areas or in hot seasons tend to have greater vulnerability and higher CTmax when compared to forest species or that reproduce in cold seasons, without variation along the studied latitudinal gradient. Although subtropical and mainly temperate species are exposed to higher thermal variability than tropical ones, hot (ARRmax) and cold (ARRmin) thermal plasticity not differed between regions, whereas were slightly higher in tropical species. We did not find relationship between basal CTmax and ARRmax, as well as, ARRmax and ARRmin. In any case, acclimation response found for CTmax was rather small in magnitude and probably insufficient to compensate alone, increased temperatures caused by climate change. The results using different rates of temperature changes unfit the predictions of greater losses in CTmax in tropical and subtropical species and are more compatible with the adaptive scenario of greater hardening compensation in most of tropical and subtropical species, mainly in the high thermotolerant species (HTS). In this context, when assessed at realistic conditions, our estimates of warming tolerances showed that amphibian tadpole species will increase vulnerability and decrease hardening expression with latitude. Our results allowed testing macrophysiological hypotheses in a refined way, including the environmental thermal heterogeneity, the species evolutionary history and the physiological traits particularities of communities and species of each of the studied regions, which contributed to the discussion about the pertinence of current macrophysiological hypotheses, generated new questions and perspectives for the continuity of research in this area. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02-23 2019-01-07T13:21:52Z 2019-01-07T13:21:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/15227 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000rzhz |
url |
http://repositorio.ufsm.br/handle/1/15227 |
identifier_str_mv |
ark:/26339/001300000rzhz |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Bioquímica UFSM Programa de Pós-Graduação em Biodiversidade Animal Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Bioquímica UFSM Programa de Pós-Graduação em Biodiversidade Animal Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172387539255296 |