Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000xpqr |
Texto Completo: | http://repositorio.ufsm.br/handle/1/21704 |
Resumo: | Lowering the O2 partial pressures to extremely low levels (< 0.5 kPa) during controlled atmosphere (CA) storage is becoming more and more usually in commercial rooms. However, lowering to much the O2 partial pressure can induce the anaerobic metabolism, with acetaldehyde and ethanol production, compounds that can induce physiological disorders and off-flavours, if in too high concentrations. Thus, to decrease the O2 partial pressure in a save way, it is necessary monitor the lowest O2 limit (LOL) in real time over the storage period, in order to set the O2 partial pressure according to fruit metabolism. This storage system in known as dynamic controlled atmosphere (DCA). Nowadays, there are three DCA methods available commercially: based on ethanol (DCA – EtOH), chlorophyll fluorescence (DCA – CF) and respiratory quotient (DCA – RQ). In this sense, at the present study were developed 5 papers aiming at: [1] evaluate the effect of CA, DCA – CF, DCA – RQ with two low oxygen stresses a week and it’s interaction with 1-MCP on the overall quality, volatile profile and expression of enzymes involved on volatile compounds synthesis; [2] study the effect of DCA – RQ storage on the dynamics of anaerobic metabolism and the induction of sugar-alcohols, such as sorbitol and glycerol, and its relationship with the membrane permeability of apples; [3] develop, calibrate and apply a novel DCA method based on CO2 production of fruit (DCA – CD) to estimate the LOL, aiming at maintain overall quality, enzyme activity, sugars, acids metabolism and the volatile compounds profile under DCA – CD. Furthermore, compare the storage under DCA – CD with DCA – CF, DCA – RQ and 1-MCP treatment. The storage of apples under DCA – RQ 1.5 with two low oxygen stresses a week resulted in fruit with lower ethylene production, higher physical and chemical quality, especially higher esters emission. This is a result of higher level of AAT enzymes genes expression (MdAAT1), even when fruit were treated with 1-MCP, showing that the expression of MdAAT1 genes are not ethylene dependent in fruit stored under DCA – RQ 1.5. Apple stored under DCA – CF had lower volatile accumulation due to lower precursors concentration and expression of enzymes involved in esters (MdAAT1), because reduces the aerobic respiration to a minimum level without the induction of anaerobic metabolism. The storage of apples under DCA – RQ resulted in anaerobic metabolism, accumulating acetaldehyde, ethanol and inducing sorbitol accumulation, decreasing the membrane permeability even under low O2 stress condition. The LOL determination can be performed, in real time, over the storage period by the CO2 production only (DCA – CD). This method allows the O2 set point determination in a dynamic way for several apple cultivars, orchards, without and with 1-MCP treatment, harvest maturity and storage temperature. Apples storage under DCA – CD resulted in similar O2 set points and quality maintenance as compared to DCA – RQ and higher as compared to CA, CA + 1-MCP and DCA – CF, because reduced decay and physiological disorders, maintained higher firmness and healthy fruit amount. Fruit stored under DCA with extremely low oxygen had higher main ester concentration, such as butyl acetate, 2-methylbutyl acetate and hexyl acetate. CA and DCA had no effect on malate concentration, being its concentration more affected by storage time. The Krebs cycle minority acids are significantly affected by the DCA conditions, being its concentration reduced by the storage under low oxygen storage (DCA – RQ 1.5 and DCA – CD 1.3). In general terms, the best long-term apple storage conditions follow this order: DCA – CD = DCA – RQ > DCA – CF = CA + 1-MCP > CA. |
id |
UFSM_d1d1dc850268bc7674c995dc7e2356bf |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/21704 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadasDynamic controlled atmosphere methods × 1-MCP: metabolism and quality of stored applesMalus domesticaNovo método de ACDDesordens fisiológicasFirmeza de polpaMetabolismo anaeróbicoExpressão gênicaMetabolismo de ácidosSorbitolNew DCA methodPhysiological disordersFlesh firmnessAnaerobic metabolismGene expressionAcids metabolismCNPQ::CIENCIAS AGRARIAS::AGRONOMIALowering the O2 partial pressures to extremely low levels (< 0.5 kPa) during controlled atmosphere (CA) storage is becoming more and more usually in commercial rooms. However, lowering to much the O2 partial pressure can induce the anaerobic metabolism, with acetaldehyde and ethanol production, compounds that can induce physiological disorders and off-flavours, if in too high concentrations. Thus, to decrease the O2 partial pressure in a save way, it is necessary monitor the lowest O2 limit (LOL) in real time over the storage period, in order to set the O2 partial pressure according to fruit metabolism. This storage system in known as dynamic controlled atmosphere (DCA). Nowadays, there are three DCA methods available commercially: based on ethanol (DCA – EtOH), chlorophyll fluorescence (DCA – CF) and respiratory quotient (DCA – RQ). In this sense, at the present study were developed 5 papers aiming at: [1] evaluate the effect of CA, DCA – CF, DCA – RQ with two low oxygen stresses a week and it’s interaction with 1-MCP on the overall quality, volatile profile and expression of enzymes involved on volatile compounds synthesis; [2] study the effect of DCA – RQ storage on the dynamics of anaerobic metabolism and the induction of sugar-alcohols, such as sorbitol and glycerol, and its relationship with the membrane permeability of apples; [3] develop, calibrate and apply a novel DCA method based on CO2 production of fruit (DCA – CD) to estimate the LOL, aiming at maintain overall quality, enzyme activity, sugars, acids metabolism and the volatile compounds profile under DCA – CD. Furthermore, compare the storage under DCA – CD with DCA – CF, DCA – RQ and 1-MCP treatment. The storage of apples under DCA – RQ 1.5 with two low oxygen stresses a week resulted in fruit with lower ethylene production, higher physical and chemical quality, especially higher esters emission. This is a result of higher level of AAT enzymes genes expression (MdAAT1), even when fruit were treated with 1-MCP, showing that the expression of MdAAT1 genes are not ethylene dependent in fruit stored under DCA – RQ 1.5. Apple stored under DCA – CF had lower volatile accumulation due to lower precursors concentration and expression of enzymes involved in esters (MdAAT1), because reduces the aerobic respiration to a minimum level without the induction of anaerobic metabolism. The storage of apples under DCA – RQ resulted in anaerobic metabolism, accumulating acetaldehyde, ethanol and inducing sorbitol accumulation, decreasing the membrane permeability even under low O2 stress condition. The LOL determination can be performed, in real time, over the storage period by the CO2 production only (DCA – CD). This method allows the O2 set point determination in a dynamic way for several apple cultivars, orchards, without and with 1-MCP treatment, harvest maturity and storage temperature. Apples storage under DCA – CD resulted in similar O2 set points and quality maintenance as compared to DCA – RQ and higher as compared to CA, CA + 1-MCP and DCA – CF, because reduced decay and physiological disorders, maintained higher firmness and healthy fruit amount. Fruit stored under DCA with extremely low oxygen had higher main ester concentration, such as butyl acetate, 2-methylbutyl acetate and hexyl acetate. CA and DCA had no effect on malate concentration, being its concentration more affected by storage time. The Krebs cycle minority acids are significantly affected by the DCA conditions, being its concentration reduced by the storage under low oxygen storage (DCA – RQ 1.5 and DCA – CD 1.3). In general terms, the best long-term apple storage conditions follow this order: DCA – CD = DCA – RQ > DCA – CF = CA + 1-MCP > CA.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqA redução da pressão parcial de O2 a níveis extremamente baixos (< 0,5 kPa) durante armazenamento em atmosfera controlada (AC) está sendo cada vez mais empregado comercialmente. Contudo, pressões parciais de O2 excessivamente baixas podem induzir o metabolismo anaeróbico, com produção de acetaldeído e etanol, os quais em excesso podem causar distúrbios fisiológicos e off-flavours. Assim, para reduzir a pressão parcial de O2 de maneira segura durante o armazenamento, é necessário o monitoramento do limite mínimo de O2 (LMO) em tempo real para adequar a pressão parcial de O2 ao metabolismo das frutas. Esse sistema de armazenamento é conhecido como atmosfera controlada dinâmica (ACD). Atualmente, estão disponíveis comercialmente três métodos de ACD, baseados no etanol (ACD – EtOH), fluorescência de clorofilas (ACD – FC) e quociente respiratório (ACD – QR). Nesse sentido, no presente trabalho foram desenvolvidos 5 artigos científicos com os objetivos de: [1] avaliar o efeito do armazenamento em AC, ACD – FC, ACD – QR com dois estresses múltiplos de baixo O2 por semana e sua interação com 1-MCP sobre a qualidade, perfil volátil e expressão de enzimas relacionadas à síntese de compostos voláteis; [2] estudar o efeito do armazenamento em ACD – QR sobre a dinâmica do metabolismo anaeróbico e indução de açúcares-álcoois, como sorbitol e glicerol, e sua relação com a permeabilidade da membrana celular em maçãs e [3] desenvolver, calibrar e aplicar um novo método de ACD, baseado na produção de CO2 das frutas (ACD – DC), para estimar o LMO, visando manter a qualidade, avaliar a atividade de enzimas, metabolismo de açúcares e de ácidos e o perfil volátil de maçãs armazenadas em ACD – DC, além disso, comparar o armazenamento em ACD-DC com os métodos de ACD – FC, ACD – QR e aplicação de 1-MCP. O armazenamento de maçãs em ACD – QR 1,5 com dois estresses de baixo O2 por semana resulta em frutas com menor produção de etileno, maior qualidade físico-química, especialmente maior emissão de ésteres. Isso é resultado da maior expressão de genes codificadores da enzima AAT (MdAAT1), mesmo em frutas tratadas com 1-MCP, evidenciando que a expressão dos genes que codificam a enzima AAT (MdAAT1) não são dependentes de etileno quando as frutas são armazenadas em ACD – QR 1,5. Maçãs armazenadas ACD – FC tem menor acúmulo de voláteis em função da menor produção de precursores e expressão de enzimas importantes para a síntese destes compostos (MdAAT1), pois reduz a níveis mínimos o metabolismo aeróbico sem induzir o metabolismo anaeróbico. O armazenamento de maçãs em ACD – QR resulta na indução do metabolismo anaeróbico, acumulando acetaldeído e etanol, porém, também induz o acúmulo de sorbitol, reduzindo a permeabilidade de membrana mesmo em condições de estresse por baixo O2. A determinação do LMO pode ser realizada de maneira precisa e em tempo real durante todo o período de armazenamento apenas pela determinação da produção de CO2 (ACD – DC). O que permite a determinação do set point de O2 da câmara de maneira dinâmica para várias cultivares de maçãs, locais de cultivo, com ou sem aplicação de 1-MCP, estádio de maturação e temperatura de armazenamento. Maçãs armazenadas em ACD – DC resultam em set points de O2 e manutenção da qualidade similar àquelas armazenadas em ACD – QR e qualidade superior àquelas armazenadas em AC, AC + 1-MCP e ACD – FC, em função da redução da incidência de podridões e distúrbios fisiológicos, manutenção de maior firmeza de polpa e proporção de frutos sadios. Frutas armazenadas em ACD com concentrações extremamente baixas de O2 também apresentam maior concentração de ésteres importantes para o aroma de maçãs, como acetato de butila, acetato de 2-metilbutila e acetato de hexila. As condições de AC e ACD não apresentam efeito no acúmulo de malato, sendo a sua concentração mais afetada pelo tempo de armazenamento. Os ácidos minoritários do ciclo de Krebs são os mais influenciados pelo armazenamento em ACD, sendo a sua concentração reduzida quando as maçãs são armazenadas nas menores pressões parciais de O2 (ACD – QR 1,5 e ACD – DC 1,3). De uma maneira geral, as melhores condições de armazenamento de maçãs por longos períodos segue a seguinte ordem: ACD – DC = ACD – QR > ACD – FC = AC + 1-MCP > AC.Universidade Federal de Santa MariaBrasilAgronomiaUFSMPrograma de Pós-Graduação em AgronomiaCentro de Ciências RuraisBrackmann, Aurihttp://lattes.cnpq.br/1305840929832646Neuwald , Daniel AlexandreWeber, AndersonBoth, VanderleiWagner, RogerThewes, Fabio Rodrigo2021-08-03T17:34:43Z2021-08-03T17:34:43Z2019-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/21704ark:/26339/001300000xpqrporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2021-08-04T06:02:58Zoai:repositorio.ufsm.br:1/21704Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2021-08-04T06:02:58Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas Dynamic controlled atmosphere methods × 1-MCP: metabolism and quality of stored apples |
title |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas |
spellingShingle |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas Thewes, Fabio Rodrigo Malus domestica Novo método de ACD Desordens fisiológicas Firmeza de polpa Metabolismo anaeróbico Expressão gênica Metabolismo de ácidos Sorbitol New DCA method Physiological disorders Flesh firmness Anaerobic metabolism Gene expression Acids metabolism CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
title_short |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas |
title_full |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas |
title_fullStr |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas |
title_full_unstemmed |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas |
title_sort |
Métodos de atmosfera controlada dinâmica × 1-MCP: metabolismo e qualidade de maçãs armazenadas |
author |
Thewes, Fabio Rodrigo |
author_facet |
Thewes, Fabio Rodrigo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brackmann, Auri http://lattes.cnpq.br/1305840929832646 Neuwald , Daniel Alexandre Weber, Anderson Both, Vanderlei Wagner, Roger |
dc.contributor.author.fl_str_mv |
Thewes, Fabio Rodrigo |
dc.subject.por.fl_str_mv |
Malus domestica Novo método de ACD Desordens fisiológicas Firmeza de polpa Metabolismo anaeróbico Expressão gênica Metabolismo de ácidos Sorbitol New DCA method Physiological disorders Flesh firmness Anaerobic metabolism Gene expression Acids metabolism CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
topic |
Malus domestica Novo método de ACD Desordens fisiológicas Firmeza de polpa Metabolismo anaeróbico Expressão gênica Metabolismo de ácidos Sorbitol New DCA method Physiological disorders Flesh firmness Anaerobic metabolism Gene expression Acids metabolism CNPQ::CIENCIAS AGRARIAS::AGRONOMIA |
description |
Lowering the O2 partial pressures to extremely low levels (< 0.5 kPa) during controlled atmosphere (CA) storage is becoming more and more usually in commercial rooms. However, lowering to much the O2 partial pressure can induce the anaerobic metabolism, with acetaldehyde and ethanol production, compounds that can induce physiological disorders and off-flavours, if in too high concentrations. Thus, to decrease the O2 partial pressure in a save way, it is necessary monitor the lowest O2 limit (LOL) in real time over the storage period, in order to set the O2 partial pressure according to fruit metabolism. This storage system in known as dynamic controlled atmosphere (DCA). Nowadays, there are three DCA methods available commercially: based on ethanol (DCA – EtOH), chlorophyll fluorescence (DCA – CF) and respiratory quotient (DCA – RQ). In this sense, at the present study were developed 5 papers aiming at: [1] evaluate the effect of CA, DCA – CF, DCA – RQ with two low oxygen stresses a week and it’s interaction with 1-MCP on the overall quality, volatile profile and expression of enzymes involved on volatile compounds synthesis; [2] study the effect of DCA – RQ storage on the dynamics of anaerobic metabolism and the induction of sugar-alcohols, such as sorbitol and glycerol, and its relationship with the membrane permeability of apples; [3] develop, calibrate and apply a novel DCA method based on CO2 production of fruit (DCA – CD) to estimate the LOL, aiming at maintain overall quality, enzyme activity, sugars, acids metabolism and the volatile compounds profile under DCA – CD. Furthermore, compare the storage under DCA – CD with DCA – CF, DCA – RQ and 1-MCP treatment. The storage of apples under DCA – RQ 1.5 with two low oxygen stresses a week resulted in fruit with lower ethylene production, higher physical and chemical quality, especially higher esters emission. This is a result of higher level of AAT enzymes genes expression (MdAAT1), even when fruit were treated with 1-MCP, showing that the expression of MdAAT1 genes are not ethylene dependent in fruit stored under DCA – RQ 1.5. Apple stored under DCA – CF had lower volatile accumulation due to lower precursors concentration and expression of enzymes involved in esters (MdAAT1), because reduces the aerobic respiration to a minimum level without the induction of anaerobic metabolism. The storage of apples under DCA – RQ resulted in anaerobic metabolism, accumulating acetaldehyde, ethanol and inducing sorbitol accumulation, decreasing the membrane permeability even under low O2 stress condition. The LOL determination can be performed, in real time, over the storage period by the CO2 production only (DCA – CD). This method allows the O2 set point determination in a dynamic way for several apple cultivars, orchards, without and with 1-MCP treatment, harvest maturity and storage temperature. Apples storage under DCA – CD resulted in similar O2 set points and quality maintenance as compared to DCA – RQ and higher as compared to CA, CA + 1-MCP and DCA – CF, because reduced decay and physiological disorders, maintained higher firmness and healthy fruit amount. Fruit stored under DCA with extremely low oxygen had higher main ester concentration, such as butyl acetate, 2-methylbutyl acetate and hexyl acetate. CA and DCA had no effect on malate concentration, being its concentration more affected by storage time. The Krebs cycle minority acids are significantly affected by the DCA conditions, being its concentration reduced by the storage under low oxygen storage (DCA – RQ 1.5 and DCA – CD 1.3). In general terms, the best long-term apple storage conditions follow this order: DCA – CD = DCA – RQ > DCA – CF = CA + 1-MCP > CA. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-18 2021-08-03T17:34:43Z 2021-08-03T17:34:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/21704 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000xpqr |
url |
http://repositorio.ufsm.br/handle/1/21704 |
identifier_str_mv |
ark:/26339/001300000xpqr |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia Centro de Ciências Rurais |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Agronomia UFSM Programa de Pós-Graduação em Agronomia Centro de Ciências Rurais |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172414534844416 |