Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial

Detalhes bibliográficos
Autor(a) principal: Borin, Vinicius Pozzobon
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000jcg2
Texto Completo: http://repositorio.ufsm.br/handle/1/8580
Resumo: Electricity consumption in homes and workplaces has been growing steadily over the decades and attitudes to reduce these costs should be taken. An interesting solution is to provide to electricity users, and also to the energy company, detailed data of individual consumption of each electrical appliance. To accomplish this, researchers in the field have focused their efforts on non-intrusive methods of load identification, where a single energy meter is able to desagreggate the appliances by monitoring the total consumption of electricity of that location. Non-intrusive methods are easy to install and demand little maintenance, but require a robust method for identifying these loads. Therefore, the aim of this work is to investigate nonintrusive methods of recognition of electrical appliances to find the desaggregated consumption of these loads. Among these methods, there are the already widely used image recognition pattern methods, that now are been used also to detect electrical devices. In this paper, two of these techniques are discussed, the Principal Component Analisys, a classical method in the literature, and the Vector Projection Length, a completely new method and never used in the loads recognition field before. Current and voltage data were collected from 16 residential appliances, involving all types of loads (resistive, inductive, electronic and hybrid/other types). These data were used as training samples and test samples (unknown samples). A study is carried out using the current and also the power, independently, as load signatures. Also, a comparative analysis of the results of signatures in the time domain and time-frequency (Stowkwell transform) is conducted. As the main contributions to this work, we verified that the Vector Projection Length for load identification is quite feasible, with results up to 96% of tested appliances being identified. However, the results with Principal Component Analisys did not presented the same performance, reaching only 81% of accuracy rate. Comparing the signatures, it became clear that one should use the current in the time-frequency domain for better performance. Neither the use of power, or the time domain obtained satisfactory results of load identification when applying image pattern recognition techniques to load recognition.
id UFSM_eab6aa1abbc2537ea3511fa2ca0152ee
oai_identifier_str oai:repositorio.ufsm.br:1/8580
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorialNon-intrusive electrical appliances recognition using vector projectionIdentificação de cargasReconhecimento de equipamentos elétricosReconhecimento não-intrusivoReconhecimento de padrõesTransformada de StockwellAppliances recognitionLoad identificationNon-intrusive recognitionPattern recognitionStockwell transformCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAElectricity consumption in homes and workplaces has been growing steadily over the decades and attitudes to reduce these costs should be taken. An interesting solution is to provide to electricity users, and also to the energy company, detailed data of individual consumption of each electrical appliance. To accomplish this, researchers in the field have focused their efforts on non-intrusive methods of load identification, where a single energy meter is able to desagreggate the appliances by monitoring the total consumption of electricity of that location. Non-intrusive methods are easy to install and demand little maintenance, but require a robust method for identifying these loads. Therefore, the aim of this work is to investigate nonintrusive methods of recognition of electrical appliances to find the desaggregated consumption of these loads. Among these methods, there are the already widely used image recognition pattern methods, that now are been used also to detect electrical devices. In this paper, two of these techniques are discussed, the Principal Component Analisys, a classical method in the literature, and the Vector Projection Length, a completely new method and never used in the loads recognition field before. Current and voltage data were collected from 16 residential appliances, involving all types of loads (resistive, inductive, electronic and hybrid/other types). These data were used as training samples and test samples (unknown samples). A study is carried out using the current and also the power, independently, as load signatures. Also, a comparative analysis of the results of signatures in the time domain and time-frequency (Stowkwell transform) is conducted. As the main contributions to this work, we verified that the Vector Projection Length for load identification is quite feasible, with results up to 96% of tested appliances being identified. However, the results with Principal Component Analisys did not presented the same performance, reaching only 81% of accuracy rate. Comparing the signatures, it became clear that one should use the current in the time-frequency domain for better performance. Neither the use of power, or the time domain obtained satisfactory results of load identification when applying image pattern recognition techniques to load recognition.Fundação de Amparo a Pesquisa no Estado do Rio Grande do SulO consumo de eletricidade em residências e ambientes de trabalho vem crescendo continuamente ao longo das décadas e atitudes para reduzir estes gastos devem ser tomadas. Uma solução interessante é fornecer aos usuários de energia elétrica, e também à própria concessionária, dados detalhados de consumo individual de cada equipamento elétrico. Para alcançar este objetivo, pesquisadores na área tem focado seus esforços em métodos não-intrusivos de identificação das cargas (equipamentos elétricos), onde um único medidor de energia é capaz de desagregar os equipamentos através do monitoramento do consumo total de energia elétrica daquele local. Métodos não-intrusivos são de fácil instalação e de pouca manutenção, porém requerem um robusto método de identificação destas cargas. Portanto, o objetivo deste trabalho é investigar métodos não-intrusivos de reconhecimento de equipamentos elétricos para encontrar o consumo desagregado destas cargas. Dentre estes métodos, existem os já muito utilizados no reconhecimento de padrões em imagens, mas que agora tem sido também usados para detectar cargas elétricas. Neste trabalho duas destas técnicas são abordadas, a Principal Component Analisys, método clássico na literatura, e o Vector Projection Length, um método completamente novo e nunca usado no reconhecimento de cargas. Coletou-se dados de corrente e tensão de 16 equipamentos elétricos residenciais dos mais variados tipos, envolvendo todos os tipos de cargas existentes (resistivas, indutivas, eletrônicas e híbridas/outros tipos). Estes dados coletados foram utilizados como amostras de treinamento e amostras de teste (amostras desconhecidas). Como assinatura das cargas é realizado um estudo empregando corrente e também potência, de forma independente. Ainda, uma análise comparativa de resultados das assinaturas no domínio do tempo e do tempo-frequência (Transformada de Stowkwell) é conduzido. Como principais contribuições para este trabalho obteve-se que o uso do Vector Projection Length na identificação de equipamentos é bastante viável, com resultados de até 96% dos equipamentos testados sendo identificados. Já os resultados com o Principal Component Analisys ficaram abaixo de seu concorrente, atingindo 81% de taxa de acertos. Comparando as assinaturas, ficou claro que deve-se utilizar a corrente no domínio do tempo-frequência para uma melhor performance. Nem o uso da potência, nem o domínio do tempo obtiveram resultados satisfatórios de identificação quando empregados.Universidade Federal de Santa MariaBREngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCampos, Alexandrehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4780200P7Barriquello, Carlos Henriquehttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4260662Z8Machado, Renatohttp://lattes.cnpq.br/2684900317624442Denardin, Gustavo Weberhttp://lattes.cnpq.br/4251219281955392Martins, Mário Lúcio da Silvahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4707553D1Borin, Vinicius Pozzobon2017-06-062017-06-062016-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfBORIN, Vinicius Pozzobon. Non-intrusive electrical appliances recognition using vector projection. 2016. 158 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.http://repositorio.ufsm.br/handle/1/8580ark:/26339/001300000jcg2porinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2017-07-25T14:46:46Zoai:repositorio.ufsm.br:1/8580Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-07-29T10:41:50.223942Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
Non-intrusive electrical appliances recognition using vector projection
title Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
spellingShingle Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
Borin, Vinicius Pozzobon
Identificação de cargas
Reconhecimento de equipamentos elétricos
Reconhecimento não-intrusivo
Reconhecimento de padrões
Transformada de Stockwell
Appliances recognition
Load identification
Non-intrusive recognition
Pattern recognition
Stockwell transform
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
title_full Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
title_fullStr Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
title_full_unstemmed Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
title_sort Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
author Borin, Vinicius Pozzobon
author_facet Borin, Vinicius Pozzobon
author_role author
dc.contributor.none.fl_str_mv Campos, Alexandre
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4780200P7
Barriquello, Carlos Henrique
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4260662Z8
Machado, Renato
http://lattes.cnpq.br/2684900317624442
Denardin, Gustavo Weber
http://lattes.cnpq.br/4251219281955392
Martins, Mário Lúcio da Silva
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4707553D1
dc.contributor.author.fl_str_mv Borin, Vinicius Pozzobon
dc.subject.por.fl_str_mv Identificação de cargas
Reconhecimento de equipamentos elétricos
Reconhecimento não-intrusivo
Reconhecimento de padrões
Transformada de Stockwell
Appliances recognition
Load identification
Non-intrusive recognition
Pattern recognition
Stockwell transform
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Identificação de cargas
Reconhecimento de equipamentos elétricos
Reconhecimento não-intrusivo
Reconhecimento de padrões
Transformada de Stockwell
Appliances recognition
Load identification
Non-intrusive recognition
Pattern recognition
Stockwell transform
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Electricity consumption in homes and workplaces has been growing steadily over the decades and attitudes to reduce these costs should be taken. An interesting solution is to provide to electricity users, and also to the energy company, detailed data of individual consumption of each electrical appliance. To accomplish this, researchers in the field have focused their efforts on non-intrusive methods of load identification, where a single energy meter is able to desagreggate the appliances by monitoring the total consumption of electricity of that location. Non-intrusive methods are easy to install and demand little maintenance, but require a robust method for identifying these loads. Therefore, the aim of this work is to investigate nonintrusive methods of recognition of electrical appliances to find the desaggregated consumption of these loads. Among these methods, there are the already widely used image recognition pattern methods, that now are been used also to detect electrical devices. In this paper, two of these techniques are discussed, the Principal Component Analisys, a classical method in the literature, and the Vector Projection Length, a completely new method and never used in the loads recognition field before. Current and voltage data were collected from 16 residential appliances, involving all types of loads (resistive, inductive, electronic and hybrid/other types). These data were used as training samples and test samples (unknown samples). A study is carried out using the current and also the power, independently, as load signatures. Also, a comparative analysis of the results of signatures in the time domain and time-frequency (Stowkwell transform) is conducted. As the main contributions to this work, we verified that the Vector Projection Length for load identification is quite feasible, with results up to 96% of tested appliances being identified. However, the results with Principal Component Analisys did not presented the same performance, reaching only 81% of accuracy rate. Comparing the signatures, it became clear that one should use the current in the time-frequency domain for better performance. Neither the use of power, or the time domain obtained satisfactory results of load identification when applying image pattern recognition techniques to load recognition.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-19
2017-06-06
2017-06-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BORIN, Vinicius Pozzobon. Non-intrusive electrical appliances recognition using vector projection. 2016. 158 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.
http://repositorio.ufsm.br/handle/1/8580
dc.identifier.dark.fl_str_mv ark:/26339/001300000jcg2
identifier_str_mv BORIN, Vinicius Pozzobon. Non-intrusive electrical appliances recognition using vector projection. 2016. 158 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.
ark:/26339/001300000jcg2
url http://repositorio.ufsm.br/handle/1/8580
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
publisher.none.fl_str_mv Universidade Federal de Santa Maria
BR
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1814439798639689728