Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul

Detalhes bibliográficos
Autor(a) principal: Dornelles, Mariana de Almeida
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300000ghp1
Texto Completo: http://repositorio.ufsm.br/handle/1/28462
Resumo: This study aimed to estimate genetic parameters for milk production on the control day of primiparous Holstein cattle raised in Rio Grande do Sul, through random regression models. In Article 01, the test day milk production (PLDC) was grouped into ten monthly classes of lactation, obtained between the 5th and the 305th days postpartum (PLDC1 to PLDC10). Analyses considering 11 different models were conducted: multi-characteristic pattern (MC), five reduced rank models adjusting the first main components (m = 1, 2, 3, 4 and 5) for the direct additive genetic effect and five models using analysis of factors (m = 1, 2, 3, 4 and 5). For the PLDC, the linear model included the effects of age at calving (linear and quadratic) and the number of days in lactation as covariates in addition to the contemporary group as a fixed effect. According to the comparison criteria, the model that adjusted the first four principal components (CP4) is the one that has provided the best fit. Estimates of Phenotypic co (variances), direct additive genetic, of permanent and residual environment obtained using the MC and CP4 models were similar. Direct heritability estimated for the ten PLDC using the MC, CP4 and AF4 models were similar and ranged from 0.06 (PL6) to 0.65 (PL10). Estimates of genetic and phenotypic correlations obtained by MC and the CP4 were equal. The reduced rank model reduced the number of parameters in the analysis, without reducing the quality of the fit. In Article 02, the PLDC of primiparous cattle were grouped into biweekly classes of lactation, ranging from 1 to 20 classes, Class 1 consisting of lactation measures between day 6 and 20, and class 2, between day 21 and 35, successively. Initially, the residual variance was considered homogeneous throughout lactation, subsequently they were assumed heterogeneous between the groups and homogeneous within each group. When considering homogeneous residual variance, it was found, according to -2LogL, AIC and BIC, that the model that used the function of Ali & Schaeffer (FAS) provided a superior fit to model the trajectory of additive genetic and permanent environmental variances of the PLDC, compared to the one that used the Wilmink function (FW). However, in this study, the superiority of parametric functions with respect to Legendre polynomials was observed only when the FW was used, ie, by using Legendre polynomials of the same order as the FAS, it was possible to observe better values of AIC, BIC and -2LogL for the Legendre polynomial model of order 5 (LEG5_HO). The Legendre polynomial of quintic order was more appropriate than the function of Ali & Schaeffer for genetic studies of milk production in the control day of Holstein cattle. The model that best fit the production of milk in the control day was the one that considered 20 classes of heterogeneous variance. However, as there are classes with similar residual variances, it is possible to group them and reduce the number of estimated parameters, decreasing the computational requirements for the adjustment of the models. In Article 03, the PLDC of primiparous cattle were grouped in to fortnightly classes of lactation, ranging from 1 to 20 classes in which Class 1consists of measures of lactations between 6 and 20, class 2, between 21 to 3, subsequently. Initially, analyses were performed considering 13 different models, different orders of adjustment of orthogonal Legendre polynomials, both for the direct genetic effect (m =3, 4, 5 and 6) and for the permanent environmental effect (m =3, 4,5, 6 and7). It was performed 13 analyses considering different types of reduced rank, setting the first principal component (m = 1, 2, 3, 4 and 5) to direct additive genetic effect. The results indicated that only four principal components are required to model the structure of (co) variance among dairy genetic control, reducing the number of parameters in the analysis. When comparing the model of full rank (LEG_67) to the model of reduced rank (CP46 ), it was observed a similar behavior in all estimates of variances. The estimated heritability for the two models were very similar for all PLDC and showed, as expected, the same trend of the variance components of random genetic additive effects, with higher values at the extremes of the curve. Estimates genetic correlations values in the models refer to the correlation of the tenth week of lactation with the others, and ranged from 0.32 to 0.99 in the first half to the ninth half of lactation, in other words, the measure decreased as PLCD moved away in time.
id UFSM_ecb1fb3555a6147083458f7ff0543a66
oai_identifier_str oai:repositorio.ufsm.br:1/28462
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do SulGenetic parameters for milk production on the control day of holstein cattle raised in Rio Grande do SulComponentes principaisFunções paramétricasPolinômios de legendrePosto reduzidoPrincipal componentsParametric functionsLegendre polynomialsReduced rankCNPQ::CIENCIAS AGRARIAS::ZOOTECNIAThis study aimed to estimate genetic parameters for milk production on the control day of primiparous Holstein cattle raised in Rio Grande do Sul, through random regression models. In Article 01, the test day milk production (PLDC) was grouped into ten monthly classes of lactation, obtained between the 5th and the 305th days postpartum (PLDC1 to PLDC10). Analyses considering 11 different models were conducted: multi-characteristic pattern (MC), five reduced rank models adjusting the first main components (m = 1, 2, 3, 4 and 5) for the direct additive genetic effect and five models using analysis of factors (m = 1, 2, 3, 4 and 5). For the PLDC, the linear model included the effects of age at calving (linear and quadratic) and the number of days in lactation as covariates in addition to the contemporary group as a fixed effect. According to the comparison criteria, the model that adjusted the first four principal components (CP4) is the one that has provided the best fit. Estimates of Phenotypic co (variances), direct additive genetic, of permanent and residual environment obtained using the MC and CP4 models were similar. Direct heritability estimated for the ten PLDC using the MC, CP4 and AF4 models were similar and ranged from 0.06 (PL6) to 0.65 (PL10). Estimates of genetic and phenotypic correlations obtained by MC and the CP4 were equal. The reduced rank model reduced the number of parameters in the analysis, without reducing the quality of the fit. In Article 02, the PLDC of primiparous cattle were grouped into biweekly classes of lactation, ranging from 1 to 20 classes, Class 1 consisting of lactation measures between day 6 and 20, and class 2, between day 21 and 35, successively. Initially, the residual variance was considered homogeneous throughout lactation, subsequently they were assumed heterogeneous between the groups and homogeneous within each group. When considering homogeneous residual variance, it was found, according to -2LogL, AIC and BIC, that the model that used the function of Ali & Schaeffer (FAS) provided a superior fit to model the trajectory of additive genetic and permanent environmental variances of the PLDC, compared to the one that used the Wilmink function (FW). However, in this study, the superiority of parametric functions with respect to Legendre polynomials was observed only when the FW was used, ie, by using Legendre polynomials of the same order as the FAS, it was possible to observe better values of AIC, BIC and -2LogL for the Legendre polynomial model of order 5 (LEG5_HO). The Legendre polynomial of quintic order was more appropriate than the function of Ali & Schaeffer for genetic studies of milk production in the control day of Holstein cattle. The model that best fit the production of milk in the control day was the one that considered 20 classes of heterogeneous variance. However, as there are classes with similar residual variances, it is possible to group them and reduce the number of estimated parameters, decreasing the computational requirements for the adjustment of the models. In Article 03, the PLDC of primiparous cattle were grouped in to fortnightly classes of lactation, ranging from 1 to 20 classes in which Class 1consists of measures of lactations between 6 and 20, class 2, between 21 to 3, subsequently. Initially, analyses were performed considering 13 different models, different orders of adjustment of orthogonal Legendre polynomials, both for the direct genetic effect (m =3, 4, 5 and 6) and for the permanent environmental effect (m =3, 4,5, 6 and7). It was performed 13 analyses considering different types of reduced rank, setting the first principal component (m = 1, 2, 3, 4 and 5) to direct additive genetic effect. The results indicated that only four principal components are required to model the structure of (co) variance among dairy genetic control, reducing the number of parameters in the analysis. When comparing the model of full rank (LEG_67) to the model of reduced rank (CP46 ), it was observed a similar behavior in all estimates of variances. The estimated heritability for the two models were very similar for all PLDC and showed, as expected, the same trend of the variance components of random genetic additive effects, with higher values at the extremes of the curve. Estimates genetic correlations values in the models refer to the correlation of the tenth week of lactation with the others, and ranged from 0.32 to 0.99 in the first half to the ninth half of lactation, in other words, the measure decreased as PLCD moved away in time.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESEste estudo teve como objetivo estimar parâmetros genéticos para produção de leite no dia do controle, de vacas primíparas da raça Holandesa criadas no Rio Grande do Sul, por meio de vários modelos de regressão aleatória. No artigo 01, as produções de leite no dia do controle (PLDC) foram agrupadas em dez classes mensais de lactação, obtidas entre 5 e 305 dias após o parto (PLDC1 a PLDC10). Foram realizadas análises considerando 11 modelos diferentes: multicaracterística padrão (MC), cinco modelos de posto reduzido ajustando os primeiros componentes principais (m = 1, 2, 3, 4 e 5) para o efeito genético aditivo direto e cinco modelos utilizando análise de fatores (m = 1, 2, 3, 4 e 5). Para as PLDC, o modelo linear utilizado incluiu os efeitos de idade da vaca ao parto e o número de dias em lactação como covariáveis, linear e quadrática, além do grupo de contemporâneos como efeito fixo. De acordo com os critérios de comparação, o modelo ajustando os quatro primeiros componentes principais (CP4) foi o que proporcionou o melhor ajuste. As estimativas de (co)variâncias fenotípicas, genéticas aditivas diretas, de ambiente permanente e residuais, obtidas utilizando os modelos MC e CP4, foram semelhantes. As herdabilidades diretas estimadas para as dez produções de leite no dia do controle utilizando os modelos MC, CP4 e AF4 foram iguais e variaram de 0,06 (PL6) a 0,65 (PL10). As estimativas de correlações genéticas e fenotípicas obtidas pelo MC e pelo CP4 foram iguais. O modelo de posto reduzido diminuiu o número de parâmetros nas análises, sem reduzir a qualidade de ajuste. No artigo 02, as PLDCs de vacas primíparas, foram agrupadas em classes quinzenais de lactação, variando de 1 a 20 classes, sendo a classe 1 constituída por lactações medidas entre os dias 6 e 20, a classe 2, entre os dias 21 e 35 e assim, sucessivamente. Inicialmente a variância residual foi considerada homogênea durante toda a lactação, posteriormente foram assumidas como heterogêneas entre os grupos quinzenais e homogêneas dentro de cada grupo. Ao considerar a variância residual homogênea verificou-se, segundo -2LogL, AIC e BIC, que o modelo que usou a função de Ali & Schaeffer (FAS), proporcionou ajuste superior ao modelar a trajetória das variâncias genéticas aditivas e de ambiente permanente das PLDCs, comparado aquela que usou a função de Wilmink (FW). Todavia, neste estudo, a superioridade das funções paramétricas com relação aos Polinômios de Legendre foi observada apenas quando a FW foi utilizada, ou seja, ao utilizar Polinômios de Legendre de mesma ordem que a FAS observou-se melhores valores para AIC, BIC e - 2LogL para o modelo que Polinômios de Legendre de ordem 5 (LEG5_HO). O polinômio de Legendre de ordem quíntica mostrou-se mais adequado que a função de Ali & Schaeffer para os estudos genéticos da produção de leite no dia do controle de vacas da raça Holandesa. O modelo que melhor se ajustou a produção de leite no dia do controle foi aquele que considerou 20 classes de variância heterogêneas. Entretanto, como existem classes com variâncias residuais semelhantes, é possível agrupá-las e reduzir o número de parâmetros estimados, diminuindo a demanda computacional para o ajuste dos modelos. No artigo 03, as PLDCs de vacas primíparas, foram agrupadas em classes quinzenais de lactação, variando de 1 a 20 classes, sendo a classe 1 constituída por lactações medidas entre os dias 6 e 20, a classe 2, entre os dias 21 e 35 e assim, sucessivamente. Inicialmente foram realizadas análises considerando 13 modelos diferentes, ordens diferentes de ajuste dos polinômios ortogonais de Legendre, tanto para o efeito genético aditivo direto (m = 3, 4, 5 e 6) quanto para efeito de ambiente permanente (m = 3, 4, 5, 6 e 7). Foram realizadas análises considerando 13 modelos diferentes de posto reduzido ajustando os primeiros componentes principais (m = 1, 2, 3, 4 e 5) para o efeito genético aditivo direto. Os resultados indicaram que apenas quatro componentes principais são requeridos para modelar a estrutura das (co)variâncias genéticas entre os controles leiteiros, reduzindo o número de parâmetros nas análises. Ao comparar o modelo de posto completo (LEG_67) com o modelo de posto reduzido (CP46) observou-se comportamento semelhante em todas as estimativas de variâncias. As herdabilidades estimadas pelos dois modelos foram muito próximas para todas as PLDC, e apresentaram, como esperado, a mesma tendência dos componentes de variância dos efeitos aleatórios genéticos aditivos, com valores superiores nos extremos da curva. As estimativas dos valores de correlações genéticas nos modelos, são referentes a correlação da décima quinzena de lactação com as demais, e variaram de 0,32 com a primeira quinzena a 0,99 com a nona quinzena da lactação, ou seja diminuíram a medida que as PLDC se afastaram no tempo.Universidade Federal de Santa MariaBrasilZootecniaUFSMPrograma de Pós-Graduação em ZootecniaCentro de Ciências RuraisRorato, Paulo Roberto Nogarahttp://lattes.cnpq.br/6804416984369871Mello, Fernanda Cristina BredaBoligon, Arione AugustiCobuci, Jaime AraujoSchwengber, Edurdo BrumFerreira, Priscila BeckerDornelles, Mariana de Almeida2023-03-29T18:13:00Z2023-03-29T18:13:00Z2014-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/28462ark:/26339/001300000ghp1porAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2023-03-29T18:13:01Zoai:repositorio.ufsm.br:1/28462Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2023-03-29T18:13:01Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
Genetic parameters for milk production on the control day of holstein cattle raised in Rio Grande do Sul
title Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
spellingShingle Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
Dornelles, Mariana de Almeida
Componentes principais
Funções paramétricas
Polinômios de legendre
Posto reduzido
Principal components
Parametric functions
Legendre polynomials
Reduced rank
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
title_short Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
title_full Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
title_fullStr Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
title_full_unstemmed Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
title_sort Parâmetros genéticos para produção de leite no dia do controle de vacas da raça holandesa criadas no Rio Grande do Sul
author Dornelles, Mariana de Almeida
author_facet Dornelles, Mariana de Almeida
author_role author
dc.contributor.none.fl_str_mv Rorato, Paulo Roberto Nogara
http://lattes.cnpq.br/6804416984369871
Mello, Fernanda Cristina Breda
Boligon, Arione Augusti
Cobuci, Jaime Araujo
Schwengber, Edurdo Brum
Ferreira, Priscila Becker
dc.contributor.author.fl_str_mv Dornelles, Mariana de Almeida
dc.subject.por.fl_str_mv Componentes principais
Funções paramétricas
Polinômios de legendre
Posto reduzido
Principal components
Parametric functions
Legendre polynomials
Reduced rank
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
topic Componentes principais
Funções paramétricas
Polinômios de legendre
Posto reduzido
Principal components
Parametric functions
Legendre polynomials
Reduced rank
CNPQ::CIENCIAS AGRARIAS::ZOOTECNIA
description This study aimed to estimate genetic parameters for milk production on the control day of primiparous Holstein cattle raised in Rio Grande do Sul, through random regression models. In Article 01, the test day milk production (PLDC) was grouped into ten monthly classes of lactation, obtained between the 5th and the 305th days postpartum (PLDC1 to PLDC10). Analyses considering 11 different models were conducted: multi-characteristic pattern (MC), five reduced rank models adjusting the first main components (m = 1, 2, 3, 4 and 5) for the direct additive genetic effect and five models using analysis of factors (m = 1, 2, 3, 4 and 5). For the PLDC, the linear model included the effects of age at calving (linear and quadratic) and the number of days in lactation as covariates in addition to the contemporary group as a fixed effect. According to the comparison criteria, the model that adjusted the first four principal components (CP4) is the one that has provided the best fit. Estimates of Phenotypic co (variances), direct additive genetic, of permanent and residual environment obtained using the MC and CP4 models were similar. Direct heritability estimated for the ten PLDC using the MC, CP4 and AF4 models were similar and ranged from 0.06 (PL6) to 0.65 (PL10). Estimates of genetic and phenotypic correlations obtained by MC and the CP4 were equal. The reduced rank model reduced the number of parameters in the analysis, without reducing the quality of the fit. In Article 02, the PLDC of primiparous cattle were grouped into biweekly classes of lactation, ranging from 1 to 20 classes, Class 1 consisting of lactation measures between day 6 and 20, and class 2, between day 21 and 35, successively. Initially, the residual variance was considered homogeneous throughout lactation, subsequently they were assumed heterogeneous between the groups and homogeneous within each group. When considering homogeneous residual variance, it was found, according to -2LogL, AIC and BIC, that the model that used the function of Ali & Schaeffer (FAS) provided a superior fit to model the trajectory of additive genetic and permanent environmental variances of the PLDC, compared to the one that used the Wilmink function (FW). However, in this study, the superiority of parametric functions with respect to Legendre polynomials was observed only when the FW was used, ie, by using Legendre polynomials of the same order as the FAS, it was possible to observe better values of AIC, BIC and -2LogL for the Legendre polynomial model of order 5 (LEG5_HO). The Legendre polynomial of quintic order was more appropriate than the function of Ali & Schaeffer for genetic studies of milk production in the control day of Holstein cattle. The model that best fit the production of milk in the control day was the one that considered 20 classes of heterogeneous variance. However, as there are classes with similar residual variances, it is possible to group them and reduce the number of estimated parameters, decreasing the computational requirements for the adjustment of the models. In Article 03, the PLDC of primiparous cattle were grouped in to fortnightly classes of lactation, ranging from 1 to 20 classes in which Class 1consists of measures of lactations between 6 and 20, class 2, between 21 to 3, subsequently. Initially, analyses were performed considering 13 different models, different orders of adjustment of orthogonal Legendre polynomials, both for the direct genetic effect (m =3, 4, 5 and 6) and for the permanent environmental effect (m =3, 4,5, 6 and7). It was performed 13 analyses considering different types of reduced rank, setting the first principal component (m = 1, 2, 3, 4 and 5) to direct additive genetic effect. The results indicated that only four principal components are required to model the structure of (co) variance among dairy genetic control, reducing the number of parameters in the analysis. When comparing the model of full rank (LEG_67) to the model of reduced rank (CP46 ), it was observed a similar behavior in all estimates of variances. The estimated heritability for the two models were very similar for all PLDC and showed, as expected, the same trend of the variance components of random genetic additive effects, with higher values at the extremes of the curve. Estimates genetic correlations values in the models refer to the correlation of the tenth week of lactation with the others, and ranged from 0.32 to 0.99 in the first half to the ninth half of lactation, in other words, the measure decreased as PLCD moved away in time.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-14
2023-03-29T18:13:00Z
2023-03-29T18:13:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/28462
dc.identifier.dark.fl_str_mv ark:/26339/001300000ghp1
url http://repositorio.ufsm.br/handle/1/28462
identifier_str_mv ark:/26339/001300000ghp1
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Zootecnia
UFSM
Programa de Pós-Graduação em Zootecnia
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172339624574976