Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais

Detalhes bibliográficos
Autor(a) principal: Lorenset, Guilherme Aluizio Steffens
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000010phn
Texto Completo: http://repositorio.ufsm.br/handle/1/31429
Resumo: In this work we study the thermal conductivity coefficient κ of bidimensional nanostructured systems of cadmium telluride (CdTe) and lead telluride (PbTe). At room temperature and bulk phase, these compounds present values of κ coefficient lower than the silicon bulk. Low values of lattice thermal conductivity are a requirement to present a high thermoelectric efficiency, that is quantified by the figure of merit, which is inversely proportional to the system thermal conductivity. In contrast, materials with high values of thermal conductivity are targeted in the electronics industry, mainly like heat sinks. When compared to bulk, the nanostructures generally present a lower thermal conductivity value and thereby they have a potential to reach higher thermoelectric efficiency. Hence, the knowledge of this coefficient, as well as its behavior, is of extreme importance for the correct applicability of the material. In thiw work, two different computational simulations approaches are used to computed the thermal conductivity. Initially, molecular dynamics simulations using the LAMMPS code and the Green-Kubo method are used. This method is widely used in the literature by correctly describing the κ value of bulk and nanostructured systems. The interaction potentials to simulate these systems are found in the literature. At 300 K we found a value of 2, 81 W/mK to the PbTe bulk, in agreement with the literature. The nanostructured systems of PbTe studied are composed of bidimensional nanosheets with thickness ranging from one layer to three layers of atoms. For one atom thickness of PbTe nanosheet, we found a lattice thermal conductivity about 50% lower than the bulk PbTe, but with the increase of the number of layers in the system, the thermal conductivity coefficient follow the bulk result. The CdTe bulk present far values from the experimental and theoretical studies, found by other methodologies This can be related with the absence of correct parametrization to this property and partial charges in the interatomic potential used. Due these results, first principles simulations with DFT are performed to study the systems. At room temperature, is calculated to the PbTe crystal a value of 2, 06 W/mK, while to the monolayer and bilayer are found values of 0, 44 and 0, 53 W/mK respectively. To CdTe systems we got values around 3, 37 and 0, 15 W/mK, to the bulk and nanosheet respectively. Thereby, we have that the bidimensional nanostructures studied have significant reduction in their thermal conductivity, suggesting potential thermoelectric applications.
id UFSM_f1d281a1e4d2d069745c9f9d677ea1bd
oai_identifier_str oai:repositorio.ufsm.br:1/31429
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionaisThermal conductivity of XTe (X=Cd,Pb) compounds nanostructured from computational simulationsCondutividade térmicaDinâmica molecularDFTNanoestruturasThermal conductivityMolecular dynamicsNanostructuresCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAIn this work we study the thermal conductivity coefficient κ of bidimensional nanostructured systems of cadmium telluride (CdTe) and lead telluride (PbTe). At room temperature and bulk phase, these compounds present values of κ coefficient lower than the silicon bulk. Low values of lattice thermal conductivity are a requirement to present a high thermoelectric efficiency, that is quantified by the figure of merit, which is inversely proportional to the system thermal conductivity. In contrast, materials with high values of thermal conductivity are targeted in the electronics industry, mainly like heat sinks. When compared to bulk, the nanostructures generally present a lower thermal conductivity value and thereby they have a potential to reach higher thermoelectric efficiency. Hence, the knowledge of this coefficient, as well as its behavior, is of extreme importance for the correct applicability of the material. In thiw work, two different computational simulations approaches are used to computed the thermal conductivity. Initially, molecular dynamics simulations using the LAMMPS code and the Green-Kubo method are used. This method is widely used in the literature by correctly describing the κ value of bulk and nanostructured systems. The interaction potentials to simulate these systems are found in the literature. At 300 K we found a value of 2, 81 W/mK to the PbTe bulk, in agreement with the literature. The nanostructured systems of PbTe studied are composed of bidimensional nanosheets with thickness ranging from one layer to three layers of atoms. For one atom thickness of PbTe nanosheet, we found a lattice thermal conductivity about 50% lower than the bulk PbTe, but with the increase of the number of layers in the system, the thermal conductivity coefficient follow the bulk result. The CdTe bulk present far values from the experimental and theoretical studies, found by other methodologies This can be related with the absence of correct parametrization to this property and partial charges in the interatomic potential used. Due these results, first principles simulations with DFT are performed to study the systems. At room temperature, is calculated to the PbTe crystal a value of 2, 06 W/mK, while to the monolayer and bilayer are found values of 0, 44 and 0, 53 W/mK respectively. To CdTe systems we got values around 3, 37 and 0, 15 W/mK, to the bulk and nanosheet respectively. Thereby, we have that the bidimensional nanostructures studied have significant reduction in their thermal conductivity, suggesting potential thermoelectric applications.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqEste trabalho estuda o coeficiente de condutividade térmica κ de sistemas nanoestruturados bidimensionais de telureto de cádmio (CdTe) e telureto de chumbo (PbTe). Estes sistemas em fase cristalina e temperatura ambiente, apresentam valores do coeficiente κ muito abaixo do cristal de silício. Baixos valores de κ são requisitos para apresentar uma alta eficiência termoelétrica, quantificada pela figura de mérito, que é inversamente proporcional à condutividade térmica do sistema. Em contrapartida, materiais com altos valores de condutividade térmica são visados principalmente na indústria eletrônica. Em comparação ao bulk, sistemas nanoestruturados geralmente apresentam um valor mais baixo de κ e, desse modo, apresentam potencial para alcançar maior eficiência termoelétrica. Dessa forma, o conhecimento deste coeficiente, assim como seu comportamento, são de extrema importância para uma correta aplicabilidade do material. Aqui é realizado o cálculo da condutividade térmica a partir de simulações computacionais, utilizando-se duas abordagens distintas. Muito utilizado na literatura por descrever corretamente o valor de κ de sistemas bulk e alguns sistemas nanoestruturados, o método de Green-Kubo, implementando no código LAMMPS foi utilizado em primeiro momento. As simulações de dinâmica molecular foram realizadas com potenciais de interação obtidos da literatura. Estas simulações forneceram um valor de 2, 81 W/mK para o cristal de PbTe à temperatura de 300 K, valor este em concordância com a literatura. Nanofolhas com espessura variando de uma a três camadas de átomos foram estudadas, com a monocamada apresentando valor em torno de 50% menor que do bulk de PbTe, enquanto que para os demais sistemas, os valores se assemelham ao do bulk de PbTe. Os valores encontrados para bulk de CdTe se distanciam dos valores experimentais e teóricos encontrados por outras metodologias. Este efeito pode estar relacionado ao potencial de interação utilizado não possuir uma parametrização adequada à essa propriedade e nem cargas parciais nos elementos do sistema. Devido a estes resultados, simulações de primeiros princípios fazendo uso da DFT são realizadas para o estudo dos sistemas. À temperatura ambiente, é calculado o valor de 2, 06 W/mK para o cristal de PbTe, enquanto que, para a monocamada e bicamada são encontrados os valores de 0, 44 e 0, 53 W/mK, respectivamente. Os sistemas de CdTe obtiveram resultados em torno de 3, 37 para o cristal e 0, 15 W/mK para a nanofolha. Com isso, temos que as nanoestruturas bidimensionais estudadas apresentam reduções significativas em sua condutividade térmica, sugerindo potencial aplicação termoelétrica.Universidade Federal de Santa MariaBrasilFísicaUFSMPrograma de Pós-Graduação em FísicaCentro de Ciências Naturais e ExatasSilva, Leandro Barros dahttp://lattes.cnpq.br/2500664315353832Calegari, Eleonir JoãoAnversa, JonasRossato, JussaneDorneles, Lucio StrazzaboscoLorenset, Guilherme Aluizio Steffens2024-02-08T14:07:34Z2024-02-08T14:07:34Z2018-11-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/31429ark:/26339/0013000010phnporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2024-02-08T14:07:34Zoai:repositorio.ufsm.br:1/31429Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2024-02-08T14:07:34Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
Thermal conductivity of XTe (X=Cd,Pb) compounds nanostructured from computational simulations
title Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
spellingShingle Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
Lorenset, Guilherme Aluizio Steffens
Condutividade térmica
Dinâmica molecular
DFT
Nanoestruturas
Thermal conductivity
Molecular dynamics
Nanostructures
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
title_full Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
title_fullStr Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
title_full_unstemmed Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
title_sort Condutividade térmica de compostos XTe (X=Cd,Pb) nanoestruturados a partir de simulações computacionais
author Lorenset, Guilherme Aluizio Steffens
author_facet Lorenset, Guilherme Aluizio Steffens
author_role author
dc.contributor.none.fl_str_mv Silva, Leandro Barros da
http://lattes.cnpq.br/2500664315353832
Calegari, Eleonir João
Anversa, Jonas
Rossato, Jussane
Dorneles, Lucio Strazzabosco
dc.contributor.author.fl_str_mv Lorenset, Guilherme Aluizio Steffens
dc.subject.por.fl_str_mv Condutividade térmica
Dinâmica molecular
DFT
Nanoestruturas
Thermal conductivity
Molecular dynamics
Nanostructures
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
topic Condutividade térmica
Dinâmica molecular
DFT
Nanoestruturas
Thermal conductivity
Molecular dynamics
Nanostructures
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description In this work we study the thermal conductivity coefficient κ of bidimensional nanostructured systems of cadmium telluride (CdTe) and lead telluride (PbTe). At room temperature and bulk phase, these compounds present values of κ coefficient lower than the silicon bulk. Low values of lattice thermal conductivity are a requirement to present a high thermoelectric efficiency, that is quantified by the figure of merit, which is inversely proportional to the system thermal conductivity. In contrast, materials with high values of thermal conductivity are targeted in the electronics industry, mainly like heat sinks. When compared to bulk, the nanostructures generally present a lower thermal conductivity value and thereby they have a potential to reach higher thermoelectric efficiency. Hence, the knowledge of this coefficient, as well as its behavior, is of extreme importance for the correct applicability of the material. In thiw work, two different computational simulations approaches are used to computed the thermal conductivity. Initially, molecular dynamics simulations using the LAMMPS code and the Green-Kubo method are used. This method is widely used in the literature by correctly describing the κ value of bulk and nanostructured systems. The interaction potentials to simulate these systems are found in the literature. At 300 K we found a value of 2, 81 W/mK to the PbTe bulk, in agreement with the literature. The nanostructured systems of PbTe studied are composed of bidimensional nanosheets with thickness ranging from one layer to three layers of atoms. For one atom thickness of PbTe nanosheet, we found a lattice thermal conductivity about 50% lower than the bulk PbTe, but with the increase of the number of layers in the system, the thermal conductivity coefficient follow the bulk result. The CdTe bulk present far values from the experimental and theoretical studies, found by other methodologies This can be related with the absence of correct parametrization to this property and partial charges in the interatomic potential used. Due these results, first principles simulations with DFT are performed to study the systems. At room temperature, is calculated to the PbTe crystal a value of 2, 06 W/mK, while to the monolayer and bilayer are found values of 0, 44 and 0, 53 W/mK respectively. To CdTe systems we got values around 3, 37 and 0, 15 W/mK, to the bulk and nanosheet respectively. Thereby, we have that the bidimensional nanostructures studied have significant reduction in their thermal conductivity, suggesting potential thermoelectric applications.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-28
2024-02-08T14:07:34Z
2024-02-08T14:07:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/31429
dc.identifier.dark.fl_str_mv ark:/26339/0013000010phn
url http://repositorio.ufsm.br/handle/1/31429
identifier_str_mv ark:/26339/0013000010phn
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Física
UFSM
Programa de Pós-Graduação em Física
Centro de Ciências Naturais e Exatas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Física
UFSM
Programa de Pós-Graduação em Física
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172425452617728