Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/001300000x9vs |
Texto Completo: | http://repositorio.ufsm.br/handle/1/26249 |
Resumo: | This work aims to carry out a quantitative and qualitative comparative assessment of the atmospheric patterns presented by Santos (2012) with the output of weather forecasting models, in order to predict the location of the occurrence of rain events with greater accuracy. For this, 3 precipitation events were selected in which there was an accumulation greater than 50 mm in 24 hours. The forecast data obtained for comparisons with the Santos (2012) patterns were the GFS (Global Forecast System) forecasts, using their daily departures from 12 UTC to 48 hours of forecast. GFS data was stored from January 2017 to June 2019, in the form of a database. The variables used were pressure at mean sea level, layer thickness between 500 hPa and 1000 hPa, geopotential height at 500 hPa, zonal wind component at 850 hPa, southern wind component at 850 hPa, specific humidity at 850 hPa, temperature air at 850 hPa, zonal wind component at 200 hPa and southern wind component at 200 hPa. The simulations obtained and the Santos (2012) patterns , were converted to matrices and thus applied to Pearson’s correlation test, to verify the quantitative similarity of the GFS simulations with the 5 Santos (2012) patterns . Event 1, registered on July 20, 2018, was identified as a cold front, associated with a cyclogenesis over the Atlantic Ocean and showing greater similarity with Santos (2012) Pattern 3 . Quantitatively, a similarity with Pattern 3 was also identified, observing the mean sea level in pressure, a variable that showed a clearer behavior in differentiating the forecast with the patterns, a correlation of 0.84 in the forecast 24 hours before the event and 0.854 in forecast 48 hours before the event. Event 2, recorded on July 25, 2018, is due to a suptropical Cyclonic Vortex in High Levels, resulting from the breaking of the excavated axis at 500 hPa. Qualitatively, this event is similar to Pattern 2, but quantitatively it was not possible to identify a higher correlation index. Event 3, observed an mesoscale convective system (MCS), with characteristics of a prefrontal with a 500 hPa dug over the Andes, low thickness gradient and intensification of pressure over southeastern South America, are similar to Santos (2012) pattern 1 on November 17, 2018, showed a correlation of 0.8412 in the 24-hour simulation and 0.783 in the simulation 48 hours before the event. Thus, perhaps to the limited number of cases analyzed in this study, the recognition was satisfactory for the cold front and MCS patterns, since these are the main precipitating systems in Rio Grande do Sul. |
id |
UFSM_fbe624aa7503a93c2a911a2836362062 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/26249 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do SulUse of climatological weather patterns in the daily forecast of intense rainfall events in Rio Grande do SulPrecipitação extremaPrevisão por padrõesPadrões atmosféricosCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIAThis work aims to carry out a quantitative and qualitative comparative assessment of the atmospheric patterns presented by Santos (2012) with the output of weather forecasting models, in order to predict the location of the occurrence of rain events with greater accuracy. For this, 3 precipitation events were selected in which there was an accumulation greater than 50 mm in 24 hours. The forecast data obtained for comparisons with the Santos (2012) patterns were the GFS (Global Forecast System) forecasts, using their daily departures from 12 UTC to 48 hours of forecast. GFS data was stored from January 2017 to June 2019, in the form of a database. The variables used were pressure at mean sea level, layer thickness between 500 hPa and 1000 hPa, geopotential height at 500 hPa, zonal wind component at 850 hPa, southern wind component at 850 hPa, specific humidity at 850 hPa, temperature air at 850 hPa, zonal wind component at 200 hPa and southern wind component at 200 hPa. The simulations obtained and the Santos (2012) patterns , were converted to matrices and thus applied to Pearson’s correlation test, to verify the quantitative similarity of the GFS simulations with the 5 Santos (2012) patterns . Event 1, registered on July 20, 2018, was identified as a cold front, associated with a cyclogenesis over the Atlantic Ocean and showing greater similarity with Santos (2012) Pattern 3 . Quantitatively, a similarity with Pattern 3 was also identified, observing the mean sea level in pressure, a variable that showed a clearer behavior in differentiating the forecast with the patterns, a correlation of 0.84 in the forecast 24 hours before the event and 0.854 in forecast 48 hours before the event. Event 2, recorded on July 25, 2018, is due to a suptropical Cyclonic Vortex in High Levels, resulting from the breaking of the excavated axis at 500 hPa. Qualitatively, this event is similar to Pattern 2, but quantitatively it was not possible to identify a higher correlation index. Event 3, observed an mesoscale convective system (MCS), with characteristics of a prefrontal with a 500 hPa dug over the Andes, low thickness gradient and intensification of pressure over southeastern South America, are similar to Santos (2012) pattern 1 on November 17, 2018, showed a correlation of 0.8412 in the 24-hour simulation and 0.783 in the simulation 48 hours before the event. Thus, perhaps to the limited number of cases analyzed in this study, the recognition was satisfactory for the cold front and MCS patterns, since these are the main precipitating systems in Rio Grande do Sul.Este trabalho tem como objetivo, realizar uma avaliação comparativa quantitativa e qualitativa dos padrões atmosféricos apresentados por Santos (2012) com as saídas de modelos de previsão do tempo, com a finalidade de prever a localização da ocorrência dos eventos de chuvas com uma maior acurácia e utilizar um método de previsão por padrões para prever precipitações extremas sobre o Rio Grande do Sul (RS). Para isso, foram selecionados 3 eventos de precipitação em que houve o acumulado superior a 50 mm em 24 horas. Os dados de previsão obtidos para as comparações com os Padrões de Santos (2012), foram as previsões do modelo GFS (Global Forecast System), utilizadas suas saídas diárias dos horários das 12 UTC para 48 horas de previsão. Os dados do GFS foram armazenados desde janeiro de 2017 até junho de 2019, na forma de um banco de dados. As variáveis utilizadas foram pressão ao nível médio do mar, espessura da camada entre 500 hPa e 1000 hPa, altura geopotencial em 500 hPa, componente zonal do vento em 850 hPa, componente meridional do vento em 850 hPa, umidade específica em 850 hPa, temperatura do ar em 850 hPa, componente zonal do vento em 200 hPa e componente meridional do vento em 200 hPa. As simulações obtidas e os padrões de Santos (2012), foram convertidos para matrizes e assim aplicados ao teste de correlação de Pearson para verificar a semelhança quantitativa das simulações do GFS com o 5 Padrões de Santos (2012). O evento 1, registrado no dia 20 de julho de 2018, foi identifico como uma frente fria, associado a uma ciclogênese sobre o Oceano Atlântico e demostrando maior semelhança com o Padrão 3 de Santos (2012). Quantitativamente também foi identificada semelhança com Padrão 3, observando na pressão o nível médio do mar, variável que apresentou um comportamento mais claro em diferenciar a previsão com os Padrões, correlação no valor de 0,84 na previsão 24 horas antes do evento e 0,854 na previsão de 48 horas antes do evento. O evento 2, registrado no dia 25 de julho de 2018, se deve a um VCAN suptropical, proveniente da quebra do eixo do cavado em 500 hPa. Qualitativamente, este evento tem semelhança com o Padrão 2, porém quantitativamente não foi possível identificar um índice de maior correlação. O evento 3, observado um SCM, com características de um pré frontal com um cavado em 500 hPa sobre os Andes, baixo gradiente de espessura e intensificação da pressão sobre o sudeste do América do Sul, assemelham-se ao Padrão 1 de Santos (2012) no dia 17 de novembro de 2018, apresentou correlação de 0,8412 na simulação 24 horas e 0,783 na simulação 48 horas antes do evento. Apesar do número restrito de casos analisados neste estudo, o reconhecimento mostrou-se satisfatório dos padrões de frente fria e SCM, visto que esses são os principais sistemas precipitantes do RS.Universidade Federal de Santa MariaBrasilMeteorologiaUFSMPrograma de Pós-Graduação em MeteorologiaCentro de Ciências Naturais e ExatasFerraz, Simone Erotildes Teleginskihttp://lattes.cnpq.br/5545006407615789Santos, Daniel CaetanoNunes, André BeckerNascimento, Ernani de LimaCebalhos, Vinícius de Souza2022-09-23T17:39:32Z2022-09-23T17:39:32Z2020-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/26249ark:/26339/001300000x9vsporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-09-23T17:39:32Zoai:repositorio.ufsm.br:1/26249Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2022-09-23T17:39:32Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul Use of climatological weather patterns in the daily forecast of intense rainfall events in Rio Grande do Sul |
title |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul |
spellingShingle |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul Cebalhos, Vinícius de Souza Precipitação extrema Previsão por padrões Padrões atmosféricos CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
title_short |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul |
title_full |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul |
title_fullStr |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul |
title_full_unstemmed |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul |
title_sort |
Uso de padrões atmosféricos climatológicos na previsão diária de eventos de precipitação intensa no Rio Grande do Sul |
author |
Cebalhos, Vinícius de Souza |
author_facet |
Cebalhos, Vinícius de Souza |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferraz, Simone Erotildes Teleginski http://lattes.cnpq.br/5545006407615789 Santos, Daniel Caetano Nunes, André Becker Nascimento, Ernani de Lima |
dc.contributor.author.fl_str_mv |
Cebalhos, Vinícius de Souza |
dc.subject.por.fl_str_mv |
Precipitação extrema Previsão por padrões Padrões atmosféricos CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
topic |
Precipitação extrema Previsão por padrões Padrões atmosféricos CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::METEOROLOGIA |
description |
This work aims to carry out a quantitative and qualitative comparative assessment of the atmospheric patterns presented by Santos (2012) with the output of weather forecasting models, in order to predict the location of the occurrence of rain events with greater accuracy. For this, 3 precipitation events were selected in which there was an accumulation greater than 50 mm in 24 hours. The forecast data obtained for comparisons with the Santos (2012) patterns were the GFS (Global Forecast System) forecasts, using their daily departures from 12 UTC to 48 hours of forecast. GFS data was stored from January 2017 to June 2019, in the form of a database. The variables used were pressure at mean sea level, layer thickness between 500 hPa and 1000 hPa, geopotential height at 500 hPa, zonal wind component at 850 hPa, southern wind component at 850 hPa, specific humidity at 850 hPa, temperature air at 850 hPa, zonal wind component at 200 hPa and southern wind component at 200 hPa. The simulations obtained and the Santos (2012) patterns , were converted to matrices and thus applied to Pearson’s correlation test, to verify the quantitative similarity of the GFS simulations with the 5 Santos (2012) patterns . Event 1, registered on July 20, 2018, was identified as a cold front, associated with a cyclogenesis over the Atlantic Ocean and showing greater similarity with Santos (2012) Pattern 3 . Quantitatively, a similarity with Pattern 3 was also identified, observing the mean sea level in pressure, a variable that showed a clearer behavior in differentiating the forecast with the patterns, a correlation of 0.84 in the forecast 24 hours before the event and 0.854 in forecast 48 hours before the event. Event 2, recorded on July 25, 2018, is due to a suptropical Cyclonic Vortex in High Levels, resulting from the breaking of the excavated axis at 500 hPa. Qualitatively, this event is similar to Pattern 2, but quantitatively it was not possible to identify a higher correlation index. Event 3, observed an mesoscale convective system (MCS), with characteristics of a prefrontal with a 500 hPa dug over the Andes, low thickness gradient and intensification of pressure over southeastern South America, are similar to Santos (2012) pattern 1 on November 17, 2018, showed a correlation of 0.8412 in the 24-hour simulation and 0.783 in the simulation 48 hours before the event. Thus, perhaps to the limited number of cases analyzed in this study, the recognition was satisfactory for the cold front and MCS patterns, since these are the main precipitating systems in Rio Grande do Sul. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-18 2022-09-23T17:39:32Z 2022-09-23T17:39:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/26249 |
dc.identifier.dark.fl_str_mv |
ark:/26339/001300000x9vs |
url |
http://repositorio.ufsm.br/handle/1/26249 |
identifier_str_mv |
ark:/26339/001300000x9vs |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Meteorologia UFSM Programa de Pós-Graduação em Meteorologia Centro de Ciências Naturais e Exatas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com |
_version_ |
1815172411983659008 |