Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6773000 https://repositorio.unifesp.br/handle/11600/52901 |
Resumo: | Purposes: To test corneal geometric (tomographic) and biomechanical parameters and to optimize their combination in the diagnosis of keratoconus and to quantify the risk of progressive ectasia after laser visual correction surgery. Methods: In the first study, a prospective review of the accuracy of tomographic indices obtained with rotational Scheimpflug system (Pentacam; Oculus Optikgeräte, Inc., Wetzlar, Germany) in the diagnosis of keratoconus, so as the identification of subclinical ectasia cases, defined as the contralateral eyes with normal topography from patients with asymmetric ectasia clinically detectable in the other eye. In the second study, we have developed models to retrospectively compare the tomographic data of the preoperative status of patients undergoing LASIK, with documented stability of at least two years and of the preoperative status of patients who developed progressive ectasia after LASIK. These models were tested for external validation including the preoperative status of two stable populations and in cases of keratoconus and cases with subclinical ectasia (normal topography eye of patients with asymmetric ectasia). In this study, the PRFI(Pentacam Random Forest Index) was developed from the artificial intelligence (AI) models to optimize the separation between the groups. In the third study, the precision (repeatability) and reproducibility study of Corvis ST measurements (Oculus Optikgeräte, Inc., Wetzlar, Germany) were tested in normal patients in three different devices, with three consecutive measures in each device. In the fourth study, we have evaluated the special distribution of corneal thickness in its horizontal section, in order to establish a pachymetric model with AI methods to increase the accuracy of the diagnosis of keratoconus. In the fifth study, we have evaluated and combined deformation indices and the horizontal pachymetry to detect keratoconus, resulting in the development of a logistic regression model (CBI – Corvis Biomechanical Index). In the sixth study, the biomechanical parameters were combined with the tomographic data with AI models, with the aim of increasing the accuracy in the diagnosis of ectasia, including subclinical cases (eye with normal topography in very asymmetric cases of ectasia). In this study has been developed the TBI (Tomography Biomechanical Index), which was tested in the seventh study to external validation. Results: The tomographic indices involving both surfaces of the cornea and the pachymetric map have presented superior capacity when compared with indices based exclusively on the anterior surface. In the second study, we have observed a higher accuracy of the PRFI in susceptible cases (preoperative of patients who developed progressive postoperative ectasia) and cases of asymmetric ectasia (AUC: 0.966 and 0.968, respectively) when compared to the best existing tomographic index (BADD [BelinAmbrósio Deviation Index] AUC: 0.845 and 0.893, respectively). In the third study, the indices of corneal deformation and pressure measurements (IOP) have presented acceptable repeatability and reproducibility in normal patients. In the fourth study, we have observed that the AI analysis of the horizontal pachymetric profile can increase the accuracy in the detection of keratoconus when comparing with the central thickness. In the fifth study, the CBI, with the combination of deformation parameters and horizontal pachymetric profile data has presented acceptable accuracy to the diagnosis of keratoconus (AUC = 0.983). The sixth study has shown that the integration of tomography data with corneal deformation data increased the accuracy in identifying the clinical ectasia (AUC = 1) and the subclinical cases (asymmetric ectasia; AUC = 0.985). The seventh study has demonstrated the robustness of the TBI with external validation. Conclusions: The diagnosis of corneal ectasia has evolved with the characterization of tomography (threedimensional geometry study) and biomechanics (the study of the deformation) with Scheimpflug images. The analysis with AI models can considerably increase accuracy in subclinical cases, said to be susceptible to develop ectasia. The parameters that characterize the biomechanical properties in vivo present acceptable repeatability and reproducibility. Statistical and AI methods are important to the applicability and clinical decision of diagnostic methods. |
id |
UFSP_06fb8848ff8f05346e87df484324a30f |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/52901 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laserCorneal tomography and biomechanics analysis with artificial intelligence to diagnosis and prevention of iatrogenic ectasia after laser vision correction surgeryRefractive surgeryIatrogenic ectasiaKeratoconusArtificial intelligenceCorneal tomography and biomechanicsCirurgia refrativaEctasia IatrogênicaCeratoconeInteligência artificialTomografia e biomecânica da córneaPurposes: To test corneal geometric (tomographic) and biomechanical parameters and to optimize their combination in the diagnosis of keratoconus and to quantify the risk of progressive ectasia after laser visual correction surgery. Methods: In the first study, a prospective review of the accuracy of tomographic indices obtained with rotational Scheimpflug system (Pentacam; Oculus Optikgeräte, Inc., Wetzlar, Germany) in the diagnosis of keratoconus, so as the identification of subclinical ectasia cases, defined as the contralateral eyes with normal topography from patients with asymmetric ectasia clinically detectable in the other eye. In the second study, we have developed models to retrospectively compare the tomographic data of the preoperative status of patients undergoing LASIK, with documented stability of at least two years and of the preoperative status of patients who developed progressive ectasia after LASIK. These models were tested for external validation including the preoperative status of two stable populations and in cases of keratoconus and cases with subclinical ectasia (normal topography eye of patients with asymmetric ectasia). In this study, the PRFI(Pentacam Random Forest Index) was developed from the artificial intelligence (AI) models to optimize the separation between the groups. In the third study, the precision (repeatability) and reproducibility study of Corvis ST measurements (Oculus Optikgeräte, Inc., Wetzlar, Germany) were tested in normal patients in three different devices, with three consecutive measures in each device. In the fourth study, we have evaluated the special distribution of corneal thickness in its horizontal section, in order to establish a pachymetric model with AI methods to increase the accuracy of the diagnosis of keratoconus. In the fifth study, we have evaluated and combined deformation indices and the horizontal pachymetry to detect keratoconus, resulting in the development of a logistic regression model (CBI – Corvis Biomechanical Index). In the sixth study, the biomechanical parameters were combined with the tomographic data with AI models, with the aim of increasing the accuracy in the diagnosis of ectasia, including subclinical cases (eye with normal topography in very asymmetric cases of ectasia). In this study has been developed the TBI (Tomography Biomechanical Index), which was tested in the seventh study to external validation. Results: The tomographic indices involving both surfaces of the cornea and the pachymetric map have presented superior capacity when compared with indices based exclusively on the anterior surface. In the second study, we have observed a higher accuracy of the PRFI in susceptible cases (preoperative of patients who developed progressive postoperative ectasia) and cases of asymmetric ectasia (AUC: 0.966 and 0.968, respectively) when compared to the best existing tomographic index (BADD [BelinAmbrósio Deviation Index] AUC: 0.845 and 0.893, respectively). In the third study, the indices of corneal deformation and pressure measurements (IOP) have presented acceptable repeatability and reproducibility in normal patients. In the fourth study, we have observed that the AI analysis of the horizontal pachymetric profile can increase the accuracy in the detection of keratoconus when comparing with the central thickness. In the fifth study, the CBI, with the combination of deformation parameters and horizontal pachymetric profile data has presented acceptable accuracy to the diagnosis of keratoconus (AUC = 0.983). The sixth study has shown that the integration of tomography data with corneal deformation data increased the accuracy in identifying the clinical ectasia (AUC = 1) and the subclinical cases (asymmetric ectasia; AUC = 0.985). The seventh study has demonstrated the robustness of the TBI with external validation. Conclusions: The diagnosis of corneal ectasia has evolved with the characterization of tomography (threedimensional geometry study) and biomechanics (the study of the deformation) with Scheimpflug images. The analysis with AI models can considerably increase accuracy in subclinical cases, said to be susceptible to develop ectasia. The parameters that characterize the biomechanical properties in vivo present acceptable repeatability and reproducibility. Statistical and AI methods are important to the applicability and clinical decision of diagnostic methods.Objetivos: Testar os parâmetros geométricos (tomográficos) e da biomecânica da córnea e otimizar a combinação desses dados para o diagnóstico de ceratocone e para quantificar o risco de ectasia progressiva após cirurgias de correção visual a laser. Métodos: No primeiro estudo, foi feita uma revisão prospectiva da acurácia dos índices tomográficos obtidos por meio de sistema de Scheimpflug rotacional (Pentacam; Oculus Optikgeräte, Inc., Wetzlar, Alemanha) para diagnóstico de ceratocone, bem como identificação de casos com ectasia subclínica, definidos como os olhos contralaterais com topografia normal de pacientes com ectasia assimétrica clinicamente detectável no olho adelfo. No segundo estudo, desenvolvemos modelos para comparar retrospectivamente os dados tomográficos do estado préoperatório de pacientes submetidos a LASIK com estabilidade documentada em seguimento superior a dois anos e do estado préoperatório de casos que desenvolveram ectasia progressiva após LASIK. Estes modelos foram testados para validação externa incluindo o estado préoperatório de outras duas populações estáveis, casos de ceratocone e casos com ectasia subclínica (olho com topografia normal de pacientes com ectasia assimétrica). Neste estudo, o PRFI (Pentacam Random Forest Index) foi desenvolvido a partir de modelos de inteligência artificial (IA) para otimizar a separação entre os grupos. No terceiro estudo, a precisão (repetibilidade) e reprodutibilidade das medidas do Corvis ST (Oculus Optikgeräte, Inc., Wetzlar, Alemanha) foram testadas em indivíduos normais em três aparelhos diferentes, com três medidas consecutivas em cada aparelho. No quarto estudo, avaliamos a distribuição espacial da espessura da córnea na sua secção horizontal, de modo a estabelecer uma função paquimétrica com métodos de IA para aumentar acurácia no diagnóstico de ceratocone. No quinto estudo, avaliamos e combinamos os índices de deformação e da paquimetria horizontal para detectar ceratocone, sendo um modelo de regressão logística desenvolvido (CBI – Corvis Biomechanical Index). No sexto estudo, os parâmetros biomecânicos foram combinados com os dados tomográficos usando modelos de IA, com o objetivo de aumentar a acurácia no diagnóstico de ectasia, incluindo os casos subclínicos (olho com topografia normal de casos altamente assimétricos de ectasia). Neste estudo foi desenvolvido o TBI (Tomography Biomechanical Index), que foi testado no sétimo estudo para validação externa. Resultados: Os índices tomográficos envolvendo ambas as superfícies da córnea e o mapa paquimétrico apresentaram capacidade superior quando comparados com os índices baseados exclusivamente na superfície anterior. No segundo estudo observamos uma acurácia maior do PRFI nos casos susceptíveis (préoperatório de pacientes que desenvolveram ectasia progressiva póscirúrgica) e casos de ectasia assimétrica (AUC: 0,966 e 0,968, respectivamente) quando comparado com o melhor índice tomográfico existente (BADD [BelinAmbrósio Deviation Index] AUC: 0,845 e 0,893, respectivamente). No terceiro estudo, os índices de deformação da córnea e as medidas pressóricas (PIO) se mostraram com repetibilidade e reprodutibilidade aceitáveis em pacientes normais. No quarto estudo, observamos que a análise de IA do perfil paquimétrico horizontal pode aumentar a acurácia para a detecção do ceratocone comparandose com a espessura do ponto central. No quinto estudo, o CBI, com a combinação dos dados obtidos da deformação e da paquimetria horizontal, mostrou acurácia aceitável para diagnóstico de ceratocone (AUC: 0,983). O sexto estudo demonstrou que a integração da tomografia com os dados de deformação da córnea aumentou a acurácia na identificação de ectasia clínica (AUC: 1.0) e dos casos subclínicos (ectasia assimétrica; AUC=0,985). O sétimo estudo demonstrou a robustez do TBI com a validação externa. Conclusões: O diagnóstico de ectasia da córnea evoluiu com a caracterização da tomografia (estudo tridimensional da geometria) e da biomecânica (estudo da deformação) com imagens de Scheimpflug. A análise com modelos de IA pode aumentar consideravelmente a acurácia em casos subclínicos, ditos como susceptíveis para desenvolver ectasia. Os parâmetros que caracterizam as propriedades biomecânicas in vivo apresentam repetibilidade e reprodutibilidade aceitáveis e são eficazes para aumentar acurácia no diagnóstico de ceratocone. Métodos estatísticos e de IA são importantes para a aplicabilidade e decisão clínica de métodos de diagnóstico.Dados abertos - Sucupira - Teses e dissertações (2018)Universidade Federal de São Paulo (UNIFESP)Ambrosio Junior, Renato [UNIFESP]Machado, Aydano Pamponethttp://lattes.cnpq.br/9314020351211705http://lattes.cnpq.br/1789497818458326http://lattes.cnpq.br/3887922034058234Universidade Federal de São Paulo (UNIFESP)Lopes, Bernardo Teixeira [UNIFESP]2020-03-25T12:10:40Z2020-03-25T12:10:40Z2018-11-28info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersion124 f.application/pdfhttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=67730002018-0845.pdfhttps://repositorio.unifesp.br/handle/11600/52901porSão Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-02T19:12:58Zoai:repositorio.unifesp.br/:11600/52901Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-02T19:12:58Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser Corneal tomography and biomechanics analysis with artificial intelligence to diagnosis and prevention of iatrogenic ectasia after laser vision correction surgery |
title |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser |
spellingShingle |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser Lopes, Bernardo Teixeira [UNIFESP] Refractive surgery Iatrogenic ectasia Keratoconus Artificial intelligence Corneal tomography and biomechanics Cirurgia refrativa Ectasia Iatrogênica Ceratocone Inteligência artificial Tomografia e biomecânica da córnea |
title_short |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser |
title_full |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser |
title_fullStr |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser |
title_full_unstemmed |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser |
title_sort |
Análise da tomografia e biomecânica da córnea com o uso de inteligência artificial para o diagnóstico e prevenção da ectasia iatrogênica após cirurgia de correção visual a laser |
author |
Lopes, Bernardo Teixeira [UNIFESP] |
author_facet |
Lopes, Bernardo Teixeira [UNIFESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ambrosio Junior, Renato [UNIFESP] Machado, Aydano Pamponet http://lattes.cnpq.br/9314020351211705 http://lattes.cnpq.br/1789497818458326 http://lattes.cnpq.br/3887922034058234 Universidade Federal de São Paulo (UNIFESP) |
dc.contributor.author.fl_str_mv |
Lopes, Bernardo Teixeira [UNIFESP] |
dc.subject.por.fl_str_mv |
Refractive surgery Iatrogenic ectasia Keratoconus Artificial intelligence Corneal tomography and biomechanics Cirurgia refrativa Ectasia Iatrogênica Ceratocone Inteligência artificial Tomografia e biomecânica da córnea |
topic |
Refractive surgery Iatrogenic ectasia Keratoconus Artificial intelligence Corneal tomography and biomechanics Cirurgia refrativa Ectasia Iatrogênica Ceratocone Inteligência artificial Tomografia e biomecânica da córnea |
description |
Purposes: To test corneal geometric (tomographic) and biomechanical parameters and to optimize their combination in the diagnosis of keratoconus and to quantify the risk of progressive ectasia after laser visual correction surgery. Methods: In the first study, a prospective review of the accuracy of tomographic indices obtained with rotational Scheimpflug system (Pentacam; Oculus Optikgeräte, Inc., Wetzlar, Germany) in the diagnosis of keratoconus, so as the identification of subclinical ectasia cases, defined as the contralateral eyes with normal topography from patients with asymmetric ectasia clinically detectable in the other eye. In the second study, we have developed models to retrospectively compare the tomographic data of the preoperative status of patients undergoing LASIK, with documented stability of at least two years and of the preoperative status of patients who developed progressive ectasia after LASIK. These models were tested for external validation including the preoperative status of two stable populations and in cases of keratoconus and cases with subclinical ectasia (normal topography eye of patients with asymmetric ectasia). In this study, the PRFI(Pentacam Random Forest Index) was developed from the artificial intelligence (AI) models to optimize the separation between the groups. In the third study, the precision (repeatability) and reproducibility study of Corvis ST measurements (Oculus Optikgeräte, Inc., Wetzlar, Germany) were tested in normal patients in three different devices, with three consecutive measures in each device. In the fourth study, we have evaluated the special distribution of corneal thickness in its horizontal section, in order to establish a pachymetric model with AI methods to increase the accuracy of the diagnosis of keratoconus. In the fifth study, we have evaluated and combined deformation indices and the horizontal pachymetry to detect keratoconus, resulting in the development of a logistic regression model (CBI – Corvis Biomechanical Index). In the sixth study, the biomechanical parameters were combined with the tomographic data with AI models, with the aim of increasing the accuracy in the diagnosis of ectasia, including subclinical cases (eye with normal topography in very asymmetric cases of ectasia). In this study has been developed the TBI (Tomography Biomechanical Index), which was tested in the seventh study to external validation. Results: The tomographic indices involving both surfaces of the cornea and the pachymetric map have presented superior capacity when compared with indices based exclusively on the anterior surface. In the second study, we have observed a higher accuracy of the PRFI in susceptible cases (preoperative of patients who developed progressive postoperative ectasia) and cases of asymmetric ectasia (AUC: 0.966 and 0.968, respectively) when compared to the best existing tomographic index (BADD [BelinAmbrósio Deviation Index] AUC: 0.845 and 0.893, respectively). In the third study, the indices of corneal deformation and pressure measurements (IOP) have presented acceptable repeatability and reproducibility in normal patients. In the fourth study, we have observed that the AI analysis of the horizontal pachymetric profile can increase the accuracy in the detection of keratoconus when comparing with the central thickness. In the fifth study, the CBI, with the combination of deformation parameters and horizontal pachymetric profile data has presented acceptable accuracy to the diagnosis of keratoconus (AUC = 0.983). The sixth study has shown that the integration of tomography data with corneal deformation data increased the accuracy in identifying the clinical ectasia (AUC = 1) and the subclinical cases (asymmetric ectasia; AUC = 0.985). The seventh study has demonstrated the robustness of the TBI with external validation. Conclusions: The diagnosis of corneal ectasia has evolved with the characterization of tomography (threedimensional geometry study) and biomechanics (the study of the deformation) with Scheimpflug images. The analysis with AI models can considerably increase accuracy in subclinical cases, said to be susceptible to develop ectasia. The parameters that characterize the biomechanical properties in vivo present acceptable repeatability and reproducibility. Statistical and AI methods are important to the applicability and clinical decision of diagnostic methods. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-28 2020-03-25T12:10:40Z 2020-03-25T12:10:40Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6773000 2018-0845.pdf https://repositorio.unifesp.br/handle/11600/52901 |
url |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6773000 https://repositorio.unifesp.br/handle/11600/52901 |
identifier_str_mv |
2018-0845.pdf |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
124 f. application/pdf |
dc.coverage.none.fl_str_mv |
São Paulo |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Paulo (UNIFESP) |
publisher.none.fl_str_mv |
Universidade Federal de São Paulo (UNIFESP) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268429027246080 |