Illuminant-Based Transformed Spaces for Image Forensics

Detalhes bibliográficos
Autor(a) principal: Carvalho, Tiago
Data de Publicação: 2016
Outros Autores: Faria, Fabio A. [UNIFESP], Pedrini, Helio, Torres, Ricardo da S., Rocha, Anderson
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: http://dx.doi.org/10.1109/TIFS.2015.2506548
https://repositorio.unifesp.br/handle/11600/57761
Resumo: In this paper, we explore transformed spaces, represented by image illuminant maps, to propose a methodology for selecting complementary forms of characterizing visual properties for an effective and automated detection of image forgeries. We combine statistical telltales provided by different image descriptors that explore color, shape, and texture features. We focus on detecting image forgeries containing people and present a method for locating the forgery, specifically, the face of a person in an image. Experiments performed on three different open-access data sets show the potential of the proposed method for pinpointing image forgeries containing people. In the two first data sets (DSO-1 and DSI-1), the proposed method achieved a classification accuracy of 94% and 84%, respectively, a remarkable improvement when compared with the state-of-the-art methods. Finally, when evaluating the third data set comprising questioned images downloaded from the Internet, we also present a detailed analysis of target images.
id UFSP_18d14444d45add2005eb8da44c03181a
oai_identifier_str oai:repositorio.unifesp.br/:11600/57761
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Illuminant-Based Transformed Spaces for Image ForensicsDigital forensicssplicing detectionilluminant mapsimage descriptorsmachine learningdiversity measuresIn this paper, we explore transformed spaces, represented by image illuminant maps, to propose a methodology for selecting complementary forms of characterizing visual properties for an effective and automated detection of image forgeries. We combine statistical telltales provided by different image descriptors that explore color, shape, and texture features. We focus on detecting image forgeries containing people and present a method for locating the forgery, specifically, the face of a person in an image. Experiments performed on three different open-access data sets show the potential of the proposed method for pinpointing image forgeries containing people. In the two first data sets (DSO-1 and DSI-1), the proposed method achieved a classification accuracy of 94% and 84%, respectively, a remarkable improvement when compared with the state-of-the-art methods. Finally, when evaluating the third data set comprising questioned images downloaded from the Internet, we also present a detailed analysis of target images.Univ Estadual Campinas, Inst Comp, RECOD Lab, BR-13083970 Campinas, SP, BrazilUniv Fed Sao Paulo, GIBIS Lab, BR-04021001 Sao Paulo, BrazilUniv Fed Sao Paulo, GIBIS Lab, BR-04021001 Sao Paulo, BrazilWeb of ScienceCoordination for the Improvement of Higher Education PersonnelMicrosoft ResearchCAPES DeepEyes ProjectSao Paulo Research FoundationBrazilian National Research CouncilInstituto Federal de Educacao, Ciencia e Tecnologia do Sudeste de Minas GeraisUniversity of CampinasCAPES: 0214-13-2FAPESP: 2010/05647-4FAPESP: 2010/14910-0FAPESP: 2011/22749-8CNPq: 140916/2012-1CNPq: 477662/2013-7CNPq: 307113/2012-4CNPq: 304352/2012-8Ieee-Inst Electrical Electronics Engineers Inc2020-08-21T16:59:46Z2020-08-21T16:59:46Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion720-733application/pdfhttp://dx.doi.org/10.1109/TIFS.2015.2506548Ieee Transactions On Information Forensics And Security. Piscataway, v. 11, n. 4, p. 720-733, 2016.10.1109/TIFS.2015.2506548WOS000370734700005.pdf1556-6013https://repositorio.unifesp.br/handle/11600/57761WOS:000370734700005engIeee Transactions On Information Forensics And SecurityPiscatawayinfo:eu-repo/semantics/openAccessCarvalho, TiagoFaria, Fabio A. [UNIFESP]Pedrini, HelioTorres, Ricardo da S.Rocha, Andersonreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-09T01:18:52Zoai:repositorio.unifesp.br/:11600/57761Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-09T01:18:52Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv Illuminant-Based Transformed Spaces for Image Forensics
title Illuminant-Based Transformed Spaces for Image Forensics
spellingShingle Illuminant-Based Transformed Spaces for Image Forensics
Carvalho, Tiago
Digital forensics
splicing detection
illuminant maps
image descriptors
machine learning
diversity measures
title_short Illuminant-Based Transformed Spaces for Image Forensics
title_full Illuminant-Based Transformed Spaces for Image Forensics
title_fullStr Illuminant-Based Transformed Spaces for Image Forensics
title_full_unstemmed Illuminant-Based Transformed Spaces for Image Forensics
title_sort Illuminant-Based Transformed Spaces for Image Forensics
author Carvalho, Tiago
author_facet Carvalho, Tiago
Faria, Fabio A. [UNIFESP]
Pedrini, Helio
Torres, Ricardo da S.
Rocha, Anderson
author_role author
author2 Faria, Fabio A. [UNIFESP]
Pedrini, Helio
Torres, Ricardo da S.
Rocha, Anderson
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Carvalho, Tiago
Faria, Fabio A. [UNIFESP]
Pedrini, Helio
Torres, Ricardo da S.
Rocha, Anderson
dc.subject.por.fl_str_mv Digital forensics
splicing detection
illuminant maps
image descriptors
machine learning
diversity measures
topic Digital forensics
splicing detection
illuminant maps
image descriptors
machine learning
diversity measures
description In this paper, we explore transformed spaces, represented by image illuminant maps, to propose a methodology for selecting complementary forms of characterizing visual properties for an effective and automated detection of image forgeries. We combine statistical telltales provided by different image descriptors that explore color, shape, and texture features. We focus on detecting image forgeries containing people and present a method for locating the forgery, specifically, the face of a person in an image. Experiments performed on three different open-access data sets show the potential of the proposed method for pinpointing image forgeries containing people. In the two first data sets (DSO-1 and DSI-1), the proposed method achieved a classification accuracy of 94% and 84%, respectively, a remarkable improvement when compared with the state-of-the-art methods. Finally, when evaluating the third data set comprising questioned images downloaded from the Internet, we also present a detailed analysis of target images.
publishDate 2016
dc.date.none.fl_str_mv 2016
2020-08-21T16:59:46Z
2020-08-21T16:59:46Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TIFS.2015.2506548
Ieee Transactions On Information Forensics And Security. Piscataway, v. 11, n. 4, p. 720-733, 2016.
10.1109/TIFS.2015.2506548
WOS000370734700005.pdf
1556-6013
https://repositorio.unifesp.br/handle/11600/57761
WOS:000370734700005
url http://dx.doi.org/10.1109/TIFS.2015.2506548
https://repositorio.unifesp.br/handle/11600/57761
identifier_str_mv Ieee Transactions On Information Forensics And Security. Piscataway, v. 11, n. 4, p. 720-733, 2016.
10.1109/TIFS.2015.2506548
WOS000370734700005.pdf
1556-6013
WOS:000370734700005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Transactions On Information Forensics And Security
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 720-733
application/pdf
dc.coverage.none.fl_str_mv Piscataway
dc.publisher.none.fl_str_mv Ieee-Inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-Inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1814268362528653312