Illuminant-Based Transformed Spaces for Image Forensics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | http://dx.doi.org/10.1109/TIFS.2015.2506548 https://repositorio.unifesp.br/handle/11600/57761 |
Resumo: | In this paper, we explore transformed spaces, represented by image illuminant maps, to propose a methodology for selecting complementary forms of characterizing visual properties for an effective and automated detection of image forgeries. We combine statistical telltales provided by different image descriptors that explore color, shape, and texture features. We focus on detecting image forgeries containing people and present a method for locating the forgery, specifically, the face of a person in an image. Experiments performed on three different open-access data sets show the potential of the proposed method for pinpointing image forgeries containing people. In the two first data sets (DSO-1 and DSI-1), the proposed method achieved a classification accuracy of 94% and 84%, respectively, a remarkable improvement when compared with the state-of-the-art methods. Finally, when evaluating the third data set comprising questioned images downloaded from the Internet, we also present a detailed analysis of target images. |
id |
UFSP_18d14444d45add2005eb8da44c03181a |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/57761 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Illuminant-Based Transformed Spaces for Image ForensicsDigital forensicssplicing detectionilluminant mapsimage descriptorsmachine learningdiversity measuresIn this paper, we explore transformed spaces, represented by image illuminant maps, to propose a methodology for selecting complementary forms of characterizing visual properties for an effective and automated detection of image forgeries. We combine statistical telltales provided by different image descriptors that explore color, shape, and texture features. We focus on detecting image forgeries containing people and present a method for locating the forgery, specifically, the face of a person in an image. Experiments performed on three different open-access data sets show the potential of the proposed method for pinpointing image forgeries containing people. In the two first data sets (DSO-1 and DSI-1), the proposed method achieved a classification accuracy of 94% and 84%, respectively, a remarkable improvement when compared with the state-of-the-art methods. Finally, when evaluating the third data set comprising questioned images downloaded from the Internet, we also present a detailed analysis of target images.Univ Estadual Campinas, Inst Comp, RECOD Lab, BR-13083970 Campinas, SP, BrazilUniv Fed Sao Paulo, GIBIS Lab, BR-04021001 Sao Paulo, BrazilUniv Fed Sao Paulo, GIBIS Lab, BR-04021001 Sao Paulo, BrazilWeb of ScienceCoordination for the Improvement of Higher Education PersonnelMicrosoft ResearchCAPES DeepEyes ProjectSao Paulo Research FoundationBrazilian National Research CouncilInstituto Federal de Educacao, Ciencia e Tecnologia do Sudeste de Minas GeraisUniversity of CampinasCAPES: 0214-13-2FAPESP: 2010/05647-4FAPESP: 2010/14910-0FAPESP: 2011/22749-8CNPq: 140916/2012-1CNPq: 477662/2013-7CNPq: 307113/2012-4CNPq: 304352/2012-8Ieee-Inst Electrical Electronics Engineers Inc2020-08-21T16:59:46Z2020-08-21T16:59:46Z2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion720-733application/pdfhttp://dx.doi.org/10.1109/TIFS.2015.2506548Ieee Transactions On Information Forensics And Security. Piscataway, v. 11, n. 4, p. 720-733, 2016.10.1109/TIFS.2015.2506548WOS000370734700005.pdf1556-6013https://repositorio.unifesp.br/handle/11600/57761WOS:000370734700005engIeee Transactions On Information Forensics And SecurityPiscatawayinfo:eu-repo/semantics/openAccessCarvalho, TiagoFaria, Fabio A. [UNIFESP]Pedrini, HelioTorres, Ricardo da S.Rocha, Andersonreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-09T01:18:52Zoai:repositorio.unifesp.br/:11600/57761Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-09T01:18:52Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Illuminant-Based Transformed Spaces for Image Forensics |
title |
Illuminant-Based Transformed Spaces for Image Forensics |
spellingShingle |
Illuminant-Based Transformed Spaces for Image Forensics Carvalho, Tiago Digital forensics splicing detection illuminant maps image descriptors machine learning diversity measures |
title_short |
Illuminant-Based Transformed Spaces for Image Forensics |
title_full |
Illuminant-Based Transformed Spaces for Image Forensics |
title_fullStr |
Illuminant-Based Transformed Spaces for Image Forensics |
title_full_unstemmed |
Illuminant-Based Transformed Spaces for Image Forensics |
title_sort |
Illuminant-Based Transformed Spaces for Image Forensics |
author |
Carvalho, Tiago |
author_facet |
Carvalho, Tiago Faria, Fabio A. [UNIFESP] Pedrini, Helio Torres, Ricardo da S. Rocha, Anderson |
author_role |
author |
author2 |
Faria, Fabio A. [UNIFESP] Pedrini, Helio Torres, Ricardo da S. Rocha, Anderson |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Carvalho, Tiago Faria, Fabio A. [UNIFESP] Pedrini, Helio Torres, Ricardo da S. Rocha, Anderson |
dc.subject.por.fl_str_mv |
Digital forensics splicing detection illuminant maps image descriptors machine learning diversity measures |
topic |
Digital forensics splicing detection illuminant maps image descriptors machine learning diversity measures |
description |
In this paper, we explore transformed spaces, represented by image illuminant maps, to propose a methodology for selecting complementary forms of characterizing visual properties for an effective and automated detection of image forgeries. We combine statistical telltales provided by different image descriptors that explore color, shape, and texture features. We focus on detecting image forgeries containing people and present a method for locating the forgery, specifically, the face of a person in an image. Experiments performed on three different open-access data sets show the potential of the proposed method for pinpointing image forgeries containing people. In the two first data sets (DSO-1 and DSI-1), the proposed method achieved a classification accuracy of 94% and 84%, respectively, a remarkable improvement when compared with the state-of-the-art methods. Finally, when evaluating the third data set comprising questioned images downloaded from the Internet, we also present a detailed analysis of target images. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2020-08-21T16:59:46Z 2020-08-21T16:59:46Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TIFS.2015.2506548 Ieee Transactions On Information Forensics And Security. Piscataway, v. 11, n. 4, p. 720-733, 2016. 10.1109/TIFS.2015.2506548 WOS000370734700005.pdf 1556-6013 https://repositorio.unifesp.br/handle/11600/57761 WOS:000370734700005 |
url |
http://dx.doi.org/10.1109/TIFS.2015.2506548 https://repositorio.unifesp.br/handle/11600/57761 |
identifier_str_mv |
Ieee Transactions On Information Forensics And Security. Piscataway, v. 11, n. 4, p. 720-733, 2016. 10.1109/TIFS.2015.2506548 WOS000370734700005.pdf 1556-6013 WOS:000370734700005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Transactions On Information Forensics And Security |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
720-733 application/pdf |
dc.coverage.none.fl_str_mv |
Piscataway |
dc.publisher.none.fl_str_mv |
Ieee-Inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-Inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268362528653312 |