Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2

Detalhes bibliográficos
Autor(a) principal: Helene, Gustavo [UNIFESP]
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNIFESP
Texto Completo: https://repositorio.unifesp.br/xmlui/handle/11600/64014
Resumo: Os processos industriais levam a uma grande contaminação de água para reuso e descarte. Os atuais tratamentos fotocatalíticos normalmente baseados em óxidos metálicos como o dióxido de titânio - TiO2 são pouco eficientes, além de absorverem luz apenas na região UV do espectro eletromagnético, o que torna o processo economicamente ineficiente. A fim de melhorar suas propriedades eletrônicas, propomos aqui funcionalizar o TiO2 com nanopartículas de prata (AgNP). A AgNP apresenta forte absorção de luz na faixa do visível, a qual depende de seu tamanho e morfologia, e sua superfície favorece processos foto/eletroquímicos na superfície do TiO2. Assim, AgNPs de diferentes tamanhos e formas (esferas, prismas e bastonetes) foram sintetizadas em água e então depositadas na superfície do TiO2 usando 3-MPA como agente de ligação. Os nanohíbridos TiO2/AgNP possuem a vantagem de apresentar elevada absorção de luz nas regiões UV e visível do espectro, serem pouco solúveis em água (catálise heterogênea) e apresentam uma lenta recombinação elétron/lacunas, aumentando a eficácia fotocatalítica. Estes foram caracterizados através de espectrofotometria UV-Vis, Difração de Raio X (DRX), Microscopia eletrônica de transmissão (MET), Infravermelho por Transformada de Fourier (FTIR), Reflectância Difusa e Fotoluminescência (FL). A relação entre otimização estrutural do nanohíbrido TiO2/AgNP e seu poder fotocatalítico foi uma questão norteadora deste trabalho. A fotocatálise foi realizada com uma lâmpada policromática de Hg (emissão UV-Vis) para a degradação do corante alaranjado de metila (MO) como modelo de poluentes orgânicos persistente em água. A descrição da cinética da fotodegradação pelo mecanismo cinético de pseudo-primeira ordem Langmuir-Hinshelwood mostrou que nanohíbridos TiO2/AgNP são significativamente mais eficientes que o TiO2 puro e que tanto tamanho quanto morfologia da AgNP são importantes na degradação do corante em água. Para TiO2/AgNP esféricas, quanto menor a AgNP, maior a eficiência fotocatalítica. Já as amostras TiO2/AgNP prisma e bastonetes se mostraram ainda mais eficientes que as esferas, por conta de um mecanismo de geração de elétrons quentes nas suas estruturas. Desta forma, demonstra-se que a adsorção de AgNPs anisotrópicas é uma forma eficiente de melhorar as propriedades fotocatalíticas do TiO2 e que o design racional e controle sobre a morfologia das AgNP é um caminho para a melhor otimização do processo.
id UFSP_61377a5a642fa00929b709874a3dc9f7
oai_identifier_str oai:repositorio.unifesp.br:11600/64014
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling Helene, Gustavo [UNIFESP]http://lattes.cnpq.br/4531874999654499http://lattes.cnpq.br/4319283598735971Pellosi, Diogo Silva [UNIFESP]Diadema2022-06-29T14:54:30Z2022-06-29T14:54:30Z2022-06-03https://repositorio.unifesp.br/xmlui/handle/11600/64014Os processos industriais levam a uma grande contaminação de água para reuso e descarte. Os atuais tratamentos fotocatalíticos normalmente baseados em óxidos metálicos como o dióxido de titânio - TiO2 são pouco eficientes, além de absorverem luz apenas na região UV do espectro eletromagnético, o que torna o processo economicamente ineficiente. A fim de melhorar suas propriedades eletrônicas, propomos aqui funcionalizar o TiO2 com nanopartículas de prata (AgNP). A AgNP apresenta forte absorção de luz na faixa do visível, a qual depende de seu tamanho e morfologia, e sua superfície favorece processos foto/eletroquímicos na superfície do TiO2. Assim, AgNPs de diferentes tamanhos e formas (esferas, prismas e bastonetes) foram sintetizadas em água e então depositadas na superfície do TiO2 usando 3-MPA como agente de ligação. Os nanohíbridos TiO2/AgNP possuem a vantagem de apresentar elevada absorção de luz nas regiões UV e visível do espectro, serem pouco solúveis em água (catálise heterogênea) e apresentam uma lenta recombinação elétron/lacunas, aumentando a eficácia fotocatalítica. Estes foram caracterizados através de espectrofotometria UV-Vis, Difração de Raio X (DRX), Microscopia eletrônica de transmissão (MET), Infravermelho por Transformada de Fourier (FTIR), Reflectância Difusa e Fotoluminescência (FL). A relação entre otimização estrutural do nanohíbrido TiO2/AgNP e seu poder fotocatalítico foi uma questão norteadora deste trabalho. A fotocatálise foi realizada com uma lâmpada policromática de Hg (emissão UV-Vis) para a degradação do corante alaranjado de metila (MO) como modelo de poluentes orgânicos persistente em água. A descrição da cinética da fotodegradação pelo mecanismo cinético de pseudo-primeira ordem Langmuir-Hinshelwood mostrou que nanohíbridos TiO2/AgNP são significativamente mais eficientes que o TiO2 puro e que tanto tamanho quanto morfologia da AgNP são importantes na degradação do corante em água. Para TiO2/AgNP esféricas, quanto menor a AgNP, maior a eficiência fotocatalítica. Já as amostras TiO2/AgNP prisma e bastonetes se mostraram ainda mais eficientes que as esferas, por conta de um mecanismo de geração de elétrons quentes nas suas estruturas. Desta forma, demonstra-se que a adsorção de AgNPs anisotrópicas é uma forma eficiente de melhorar as propriedades fotocatalíticas do TiO2 e que o design racional e controle sobre a morfologia das AgNP é um caminho para a melhor otimização do processo.Industrial processes lead to a large amount of water contamination for reuse and disposal. Current photocatalytic processes usually based on metallic oxides such as titanium dioxide - TiO2 are not very efficient, in addition to absorbing light only in the UV region of the electromagnetic spectrum, which makes the process economically inefficient. In order to improve its electronic properties, we propose here TiO2 functionalization with silver nanoparticles (AgNP). AgNP shows strong absorption of light in the visible range, which depends on its size and morphology. In addition, its surface favors photo/electrochemical processes on the TiO2 surface. Thus, AgNPs of different sizes and shapes (spheres, prisms and rods) were synthesized in water and then deposited on TiO2 surface using 3-MPA as a binding agent. TiO2/AgNP nanohybrids have the advantage of presenting high absorption of light in the UV and visible regions of the spectrum, being poorly soluble in water (heterogeneous catalysis) and a slow electron/hole recombination, which increases the photocatalytic efficiency. These were characterized by UV-Vis spectrophotometry, X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR), Diffuse Reflectance and Photoluminescence (PL). The relationship between structural optimization of the TiO2/AgNP nanohybrid and its photocatalytic power was a guiding question in this work. Photocatalysis was performed with a polychromatic Hg lamp (UV-Vis emission) for the degradation of the methyl orange (MO) dye as a model of organic pollution in water. The photodegradation kinetics followed Langmuir-Hinshelwood pseudo-first order kinetic mechanism and showed that TiO2/AgNP nanohybrids are significantly more efficient than pure TiO2 and that both size and morphology are important in the degradation of the dye in water. For spherical TiO2/AgNP, the lower the AgNP, the higher the photocatalytic efficiency. The TiO2/AgNP prism and rods samples were even more efficient than the spheres, due to a mechanism of generation of hot electrons on the AgNP surface. Therefore, the present work demonstrated that adsorption of anisotropic AgNPs is an efficient way to improve the photocatalytic properties of TiO2 and that the rational design and control over the morphology of AgNP can optimize the process.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP: 2019/01604-3100 f.porUniversidade Federal de São PauloNanotecnologiaLuz visívelFotocatáliseRemediação ambientalCorantesNanotechnologyVisible lightPhotocatalysisEnvironmental remediationDyesFotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESPInstituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF)Química - Ciência e Tecnologia da SustentabilidadeCiências da SustentabilidadeDesenvolvimento e aplicações de materiais sustentáveisORIGINALDissertação Mestrado Gustavo Helene.pdfDissertação Mestrado Gustavo Helene.pdfDissertação de mestradoapplication/pdf6860797${dspace.ui.url}/bitstream/11600/64014/1/Disserta%c3%a7%c3%a3o%20Mestrado%20Gustavo%20Helene.pdff7d04914942da103fed1f65988dc2294MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-85876${dspace.ui.url}/bitstream/11600/64014/2/license.txtf3c197e3475db92ba07248c9bec22fb9MD52open accessTEXTDissertação Mestrado Gustavo Helene.pdf.txtDissertação Mestrado Gustavo Helene.pdf.txtExtracted texttext/plain171572${dspace.ui.url}/bitstream/11600/64014/3/Disserta%c3%a7%c3%a3o%20Mestrado%20Gustavo%20Helene.pdf.txtf2203affcbea3ca68a8c02e42f7ad172MD53open accessTHUMBNAILDissertação Mestrado Gustavo Helene.pdf.jpgDissertação Mestrado Gustavo Helene.pdf.jpgIM Thumbnailimage/jpeg4695${dspace.ui.url}/bitstream/11600/64014/5/Disserta%c3%a7%c3%a3o%20Mestrado%20Gustavo%20Helene.pdf.jpg4979f5052de04df3e23facb90719dbb0MD55open access11600/640142023-05-12 01:03:15.806open accessoai:repositorio.unifesp.br:11600/64014VEVSTU9TIEUgQ09OREnDh8OVRVMgUEFSQSBPIExJQ0VOQ0lBTUVOVE8gRE8gQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIE5PIFJFUE9TSVTDk1JJTyBJTlNUSVRVQ0lPTkFMIFVOSUZFU1AKCjEuIEV1LCBHdXN0YXZvIEhlbGVuZSAoZ3VzdGF2by5oZWxlbmVAdW5pZmVzcC5iciksIHJlc3BvbnPDoXZlbCBwZWxvIHRyYWJhbGhvIOKAnEZvdG9kZWdyYWRhw6fDo28gZGUgY29yYW50ZSBvcmfDom5pY28gZW0gbWVpbyBhcXVvc28gcG9yIGZvdG9jYXTDoWxpc2UgcGxhc23DtG5pY2EgY29tIHVzbyBkZSBuYW5vcGFydMOtY3VsYXMgZGUgQWcgZSBUaU8y4oCdIGUvb3UgdXN1w6FyaW8tZGVwb3NpdGFudGUgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgVU5JRkVTUCxhc3NlZ3VybyBubyBwcmVzZW50ZSBhdG8gcXVlIHNvdSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCBhc3NlZ3VybyB0ZXIgb2J0aWRvIGRpcmV0YW1lbnRlIGRvcyBkZXZpZG9zIHRpdHVsYXJlcyBhdXRvcml6YcOnw6NvIHByw6l2aWEgZSBleHByZXNzYSBwYXJhIG8gZGVww7NzaXRvIGUgcGFyYSBhIGRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcyBhZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG8gcHJlc2VudGUgdGVybW8gZGUgbGljZW5jaWFtZW50bywgZGUgbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU8OjbyBQYXVsbyAoVU5JRkVTUCkgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgVU5JRkVTUCwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU8OjbyBQYXVsbyAoVU5JRkVTUCkgcG9yIG1laW8gZGUgc2V1cyBzaXN0ZW1hcyBpbmZvcm1hdGl6YWRvcy4KCjIuIEEgY29uY29yZMOibmNpYSBjb20gZXN0YSBsaWNlbsOnYSB0ZW0gY29tbyBjb25zZXF1w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFPDo28gUGF1bG8gKFVOSUZFU1ApIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCBkZSByZXByb2R1emlyIGUgZGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU8OjbyBQYXVsbyAoVU5JRkVTUCkuCgo0LiBFc3RhIGxpY2Vuw6dhIGFicmFuZ2UsIGFpbmRhLCBub3MgbWVzbW9zIHRlcm1vcyBlc3RhYmVsZWNpZG9zIG5vIGl0ZW0gMiwgc3VwcmEsIHRvZG9zIG9zIGRpcmVpdG9zIGNvbmV4b3MgZGUgYXJ0aXN0YXMgaW50w6lycHJldGVzIG91IGV4ZWN1dGFudGVzLCBwcm9kdXRvcmVzIGZvbm9ncsOhZmljb3Mgb3UgZW1wcmVzYXMgZGUgcmFkaW9kaWZ1c8OjbyBxdWUgZXZlbnR1YWxtZW50ZSBzZWphbSBhcGxpY8OhdmVpcyBlbSByZWxhw6fDo28gw6Agb2JyYSBkZXBvc2l0YWRhLCBlbSBjb25mb3JtaWRhZGUgY29tIG8gcmVnaW1lIGZpeGFkbyBubyBUw610dWxvIFYgZGEgTGVpIDkuNjEwLzk4LgoKNS4gU2UgYSBPYnJhIGRlcG9zaXRhZGEgZm9pIG91IMOpIG9iamV0byBkZSBmaW5hbmNpYW1lbnRvIHBvciBpbnN0aXR1acOnw7VlcyBkZSBmb21lbnRvIMOgIHBlc3F1aXNhIG91IHF1YWxxdWVyIG91dHJhIHNlbWVsaGFudGUsIHZvY8OqIG91IG8gdGl0dWxhciBhc3NlZ3VyYSBxdWUgY3VtcHJpdSB0b2RhcyBhcyBvYnJpZ2HDp8O1ZXMgcXVlIGxoZSBmb3JhbSBpbXBvc3RhcyBwZWxhIGluc3RpdHVpw6fDo28gZmluYW5jaWFkb3JhIGVtIHJhesOjbyBkbyBmaW5hbmNpYW1lbnRvLCBlIHF1ZSBuw6NvIGVzdMOhIGNvbnRyYXJpYW5kbyBxdWFscXVlciBkaXNwb3Npw6fDo28gY29udHJhdHVhbCByZWZlcmVudGUgw6AgcHVibGljYcOnw6NvIGRvIGNvbnRlw7pkbyBvcmEgc3VibWV0aWRvIGFvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIFVOSUZFU1AuCiAKNi4gQXV0b3JpemEgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTw6NvIFBhdWxvIGEgZGlzcG9uaWJpbGl6YXIgYSBvYnJhIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIFVOSUZFU1AgZGUgZm9ybWEgZ3JhdHVpdGEsIGRlIGFjb3JkbyBjb20gYSBsaWNlbsOnYSBww7pibGljYSBDcmVhdGl2ZSBDb21tb25zOiBBdHJpYnVpw6fDo28tU2VtIERlcml2YcOnw7Vlcy1TZW0gRGVyaXZhZG9zIDQuMCBJbnRlcm5hY2lvbmFsIChDQyBCWS1OQy1ORCksIHBlcm1pdGluZG8gc2V1IGxpdnJlIGFjZXNzbywgdXNvIGUgY29tcGFydGlsaGFtZW50bywgZGVzZGUgcXVlIGNpdGFkYSBhIGZvbnRlLiBBIG9icmEgY29udGludWEgcHJvdGVnaWRhIHBvciBEaXJlaXRvcyBBdXRvcmFpcyBlL291IHBvciBvdXRyYXMgbGVpcyBhcGxpY8OhdmVpcy4gUXVhbHF1ZXIgdXNvIGRhIG9icmEsIHF1ZSBuw6NvIG8gYXV0b3JpemFkbyBzb2IgZXN0YSBsaWNlbsOnYSBvdSBwZWxhIGxlZ2lzbGHDp8OjbyBhdXRvcmFsLCDDqSBwcm9pYmlkby4gIAoKNy4gQXRlc3RhIHF1ZSBhIE9icmEgc3VibWV0aWRhIG7Do28gY29udMOpbSBxdWFscXVlciBpbmZvcm1hw6fDo28gY29uZmlkZW5jaWFsIHN1YSBvdSBkZSB0ZXJjZWlyb3MuCgo4LiBBdGVzdGEgcXVlIG8gdHJhYmFsaG8gc3VibWV0aWRvIMOpIG9yaWdpbmFsIGUgZm9pIGVsYWJvcmFkbyByZXNwZWl0YW5kbyBvcyBwcmluY8OtcGlvcyBkYSBtb3JhbCBlIGRhIMOpdGljYSBlIG7Do28gdmlvbG91IHF1YWxxdWVyIGRpcmVpdG8gZGUgcHJvcHJpZWRhZGUgaW50ZWxlY3R1YWwsIHNvYiBwZW5hIGRlIHJlc3BvbmRlciBjaXZpbCwgY3JpbWluYWwsIMOpdGljYSBlIHByb2Zpc3Npb25hbG1lbnRlIHBvciBtZXVzIGF0b3M7Cgo5LiBBdGVzdGEgcXVlIGEgdmVyc8OjbyBkbyB0cmFiYWxobyBwcmVzZW50ZSBubyBhcnF1aXZvIHN1Ym1ldGlkbyDDqSBhIHZlcnPDo28gZGVmaW5pdGl2YSBxdWUgaW5jbHVpIGFzIGFsdGVyYcOnw7VlcyBkZWNvcnJlbnRlcyBkYSBkZWZlc2EsIHNvbGljaXRhZGFzIHBlbGEgYmFuY2EsIHNlIGhvdXZlIGFsZ3VtYSwgb3Ugc29saWNpdGFkYXMgcG9yIHBhcnRlIGRlIG9yaWVudGHDp8OjbyBkb2NlbnRlIHJlc3BvbnPDoXZlbDsKCjEwLiBDb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFPDo28gUGF1bG8gKFVOSUZFU1ApIG8gZGlyZWl0byBuw6NvIGV4Y2x1c2l2byBkZSByZWFsaXphciBxdWFpc3F1ZXIgYWx0ZXJhw6fDtWVzIG5hIG3DrWRpYSBvdSBubyBmb3JtYXRvIGRvIGFycXVpdm8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YcOnw6NvIGRpZ2l0YWwsIGRlIGFjZXNzaWJpbGlkYWRlIGUgZGUgbWVsaG9yIGlkZW50aWZpY2HDp8OjbyBkbyB0cmFiYWxobyBzdWJtZXRpZG8sIGRlc2RlIHF1ZSBuw6NvIHNlamEgYWx0ZXJhZG8gc2V1IGNvbnRlw7pkbyBpbnRlbGVjdHVhbC4KCkFvIGNvbmNsdWlyIGFzIGV0YXBhcyBkbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvIGRlIGFycXVpdm9zIG5vIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIFVOSUZFU1AsIGF0ZXN0byBxdWUgbGkgZSBjb25jb3JkZWkgaW50ZWdyYWxtZW50ZSBjb20gb3MgdGVybW9zIGFjaW1hIGRlbGltaXRhZG9zLCBzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJvIG9zIHJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vcyBpdGVucyBtZW5jaW9uYWRvcyBhbnRlcmlvcm1lbnRlLgoKSGF2ZW5kbyBxdWFscXVlciBkaXNjb3Jkw6JuY2lhIGVtIHJlbGHDp8OjbyBhIHByZXNlbnRlIGxpY2Vuw6dhIG91IG7Do28gc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vcyBpdGVucyBhbnRlcmlvcmVzLCB2b2PDqiBkZXZlIGludGVycm9tcGVyIGltZWRpYXRhbWVudGUgbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLiBBIGNvbnRpbnVpZGFkZSBkbyBwcm9jZXNzbyBlcXVpdmFsZSDDoCBjb25jb3Jkw6JuY2lhIGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXF1w6puY2lhcyBuZWxlIHByZXZpc3Rhcywgc3VqZWl0YW5kby1zZSBvIHNpZ25hdMOhcmlvIGEgc2Fuw6fDtWVzIGNpdmlzIGUgY3JpbWluYWlzIGNhc28gbsOjbyBzZWphIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291IGNvbmV4b3MgYXBsaWPDoXZlaXMgw6AgT2JyYSBkZXBvc2l0YWRhIGR1cmFudGUgZXN0ZSBwcm9jZXNzbywgb3UgY2FzbyBuw6NvIHRlbmhhIG9idGlkbyBwcsOpdmlhIGUgZXhwcmVzc2EgYXV0b3JpemHDp8OjbyBkbyB0aXR1bGFyIHBhcmEgbyBkZXDDs3NpdG8gZSB0b2RvcyBvcyB1c29zIGRhIE9icmEgZW52b2x2aWRvcy4KClNlIHRpdmVyIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIHF1YW50byBhbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBlbnRyZSBlbSBjb250YXRvIGNvbSBhIGJpYmxpb3RlY2EgZG8gc2V1IGNhbXB1cyAoY29uc3VsdGUgZW06IGh0dHBzOi8vYmlibGlvdGVjYXMudW5pZmVzcC5ici9iaWJsaW90ZWNhcy1kYS1yZWRlKS4gCgpTw6NvIFBhdWxvLCBUdWUgSnVuIDI4IDE5OjU0OjA5IFVUQyAyMDIyLgo=Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestopendoar:34652023-05-12T04:03:15Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.pt_BR.fl_str_mv Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
title Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
spellingShingle Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
Helene, Gustavo [UNIFESP]
Nanotecnologia
Luz visível
Fotocatálise
Remediação ambiental
Corantes
Nanotechnology
Visible light
Photocatalysis
Environmental remediation
Dyes
title_short Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
title_full Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
title_fullStr Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
title_full_unstemmed Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
title_sort Fotodegradação de corante orgânico em meio aquoso por fotocatálise plasmônica com uso de nanopartículas de Ag e TiO2
author Helene, Gustavo [UNIFESP]
author_facet Helene, Gustavo [UNIFESP]
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4531874999654499
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4319283598735971
dc.contributor.author.fl_str_mv Helene, Gustavo [UNIFESP]
dc.contributor.advisor1.fl_str_mv Pellosi, Diogo Silva [UNIFESP]
contributor_str_mv Pellosi, Diogo Silva [UNIFESP]
dc.subject.por.fl_str_mv Nanotecnologia
Luz visível
Fotocatálise
Remediação ambiental
Corantes
topic Nanotecnologia
Luz visível
Fotocatálise
Remediação ambiental
Corantes
Nanotechnology
Visible light
Photocatalysis
Environmental remediation
Dyes
dc.subject.eng.fl_str_mv Nanotechnology
Visible light
Photocatalysis
Environmental remediation
Dyes
description Os processos industriais levam a uma grande contaminação de água para reuso e descarte. Os atuais tratamentos fotocatalíticos normalmente baseados em óxidos metálicos como o dióxido de titânio - TiO2 são pouco eficientes, além de absorverem luz apenas na região UV do espectro eletromagnético, o que torna o processo economicamente ineficiente. A fim de melhorar suas propriedades eletrônicas, propomos aqui funcionalizar o TiO2 com nanopartículas de prata (AgNP). A AgNP apresenta forte absorção de luz na faixa do visível, a qual depende de seu tamanho e morfologia, e sua superfície favorece processos foto/eletroquímicos na superfície do TiO2. Assim, AgNPs de diferentes tamanhos e formas (esferas, prismas e bastonetes) foram sintetizadas em água e então depositadas na superfície do TiO2 usando 3-MPA como agente de ligação. Os nanohíbridos TiO2/AgNP possuem a vantagem de apresentar elevada absorção de luz nas regiões UV e visível do espectro, serem pouco solúveis em água (catálise heterogênea) e apresentam uma lenta recombinação elétron/lacunas, aumentando a eficácia fotocatalítica. Estes foram caracterizados através de espectrofotometria UV-Vis, Difração de Raio X (DRX), Microscopia eletrônica de transmissão (MET), Infravermelho por Transformada de Fourier (FTIR), Reflectância Difusa e Fotoluminescência (FL). A relação entre otimização estrutural do nanohíbrido TiO2/AgNP e seu poder fotocatalítico foi uma questão norteadora deste trabalho. A fotocatálise foi realizada com uma lâmpada policromática de Hg (emissão UV-Vis) para a degradação do corante alaranjado de metila (MO) como modelo de poluentes orgânicos persistente em água. A descrição da cinética da fotodegradação pelo mecanismo cinético de pseudo-primeira ordem Langmuir-Hinshelwood mostrou que nanohíbridos TiO2/AgNP são significativamente mais eficientes que o TiO2 puro e que tanto tamanho quanto morfologia da AgNP são importantes na degradação do corante em água. Para TiO2/AgNP esféricas, quanto menor a AgNP, maior a eficiência fotocatalítica. Já as amostras TiO2/AgNP prisma e bastonetes se mostraram ainda mais eficientes que as esferas, por conta de um mecanismo de geração de elétrons quentes nas suas estruturas. Desta forma, demonstra-se que a adsorção de AgNPs anisotrópicas é uma forma eficiente de melhorar as propriedades fotocatalíticas do TiO2 e que o design racional e controle sobre a morfologia das AgNP é um caminho para a melhor otimização do processo.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-06-29T14:54:30Z
dc.date.available.fl_str_mv 2022-06-29T14:54:30Z
dc.date.issued.fl_str_mv 2022-06-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.unifesp.br/xmlui/handle/11600/64014
url https://repositorio.unifesp.br/xmlui/handle/11600/64014
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 100 f.
dc.coverage.spatial.pt_BR.fl_str_mv Diadema
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo
publisher.none.fl_str_mv Universidade Federal de São Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
bitstream.url.fl_str_mv ${dspace.ui.url}/bitstream/11600/64014/1/Disserta%c3%a7%c3%a3o%20Mestrado%20Gustavo%20Helene.pdf
${dspace.ui.url}/bitstream/11600/64014/2/license.txt
${dspace.ui.url}/bitstream/11600/64014/3/Disserta%c3%a7%c3%a3o%20Mestrado%20Gustavo%20Helene.pdf.txt
${dspace.ui.url}/bitstream/11600/64014/5/Disserta%c3%a7%c3%a3o%20Mestrado%20Gustavo%20Helene.pdf.jpg
bitstream.checksum.fl_str_mv f7d04914942da103fed1f65988dc2294
f3c197e3475db92ba07248c9bec22fb9
f2203affcbea3ca68a8c02e42f7ad172
4979f5052de04df3e23facb90719dbb0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv
_version_ 1802764224030572544